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PREFACE 
 
The Finnish National committee of the International Lithosphere Programme (ILP) organises 

every second year the LITHOSPHERE symposium, which provides a forum for lithosphere 

researchers to present results and reviews as well as to inspire interdisciplinary discussions. The 

ninth symposium  - LITHOSPHERE 2016 – comprises 47 presentations. The extended abstracts 

(in this volume) provide a good overview on current research on structure and processes of 

solid Earth.  

 

The three-day symposium is hosted by the Geological Survey of Finland (GTK) and it will take 

place in Espoo at the Southern Finland Office of GTK in November 9-11, 2016. The participants 

will present their results in oral and poster sessions. Posters prepared by graduate and 

postgraduate students will be evaluated and the best one will be awarded. The invited talks are 

given by Prof. Gillian R. Foulger (University of Durham, UK) and Research director Pekka 

Heikkinen (Institute of Seismology, University of Helsinki).  

 

This special volume “LITHOSPHERE 2016” contains the programme and extended abstracts 

of the symposium in alphabetical order. 

 

 

Helsinki, October 25, 2016 

 

Ilmo Kukkonen, Suvi Heinonen, Kati Oinonen, Katriina Arhe, Olav Eklund, Fredrik Karell, 

Elena Kozlovskaya, Arto Luttinen, Raimo Lahtinen, Juha Lunkka, Vesa Nykänen,  

Markku Poutanen, Eija Tanskanen and Timo Tiira 

 

Lithosphere 2016 Organizing Committee 
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OpenFIRE – enhancing the accessibility of the  

Finnish Reflection Experiment data products 
 

A.J. Aalto1, P.J. Heikkinen1, A. Heinonen1, A. Korja1, and S. Väkevä1 

 

1Insitute of Seismology, Gustaf Hällströmin katu 2B, 00014, University of Helsinki  

E-mail: aku.heinonen@helsinki.fi 

 

OpenFIRE is an open science project acting within the Finnish Open Science and Research Initiative (ATT) by the 

Ministry of Education and Culture of Finland, which will produce a revised data archive and a new intuitive map-

based user interface for the seismic reflection data of the Finnish Reflection Experiment (FIRE). All FIRE data 

and related products will be freely available for anyone to browse and download through the AVAA open research 

data portal. The OpenFIRE platform and user interface are produced as open source resources and proposed to act 

as a reference realisation of a web service for reflection seismic data in the scope of the European Plate Observing 

System (EPOS). 

 

Keywords: deep seismic sounding, seismic reflection data, open science, continental 

lithosphere, Fennoscandian Shield 

 

1. Motivation 

The Finnish Reflection Experiment (FIRE) is a reflection seismic experiment that was 

conducted in collaboration with the Universities of Oulu and Helsinki, Geological Survey of 

Finland (GTK), and the Russian company SpetsGeofysika in the early 2000s. The field 

measurements were carried out during four field seasons in 2001–2004 and the data were 

originally processed and published in 2005–2009. The dataset comprises over 2100 kilometres 

of high-resolution seismic reflection profiles that transect all the major Precambrian geological 

formations of the Finnish bedrock (Figure 1). 

Regardless of the fact that the FIRE dataset is considered to be one of the best of its kind 

in the world it has been relatively underused up to date. The main academic output on most of 

the FIRE profiles was compiled already in 2006 and published as a preliminary report 

(Kukkonen and Lahtinen, 2006). The material and datasets have all been freely available for 

anyone interested but their accessibility has been rather poor, which has led to relatively low 

usage and academic output. 

 

2. The OpenFIRE project 

The OpenFIRE project that was launched in the beginning of the year 2016 is a Ministry of 

Education and Culture of Finland -funded endeavour that is aimed at increasing the visibility 

and accessibility of the FIRE data and lowering their user initiation threshold. The project has 

been conducted in the context of the Finnish Open Science and Research Initiative (ATT) at the 

Institute of Seismology, University of Helsinki in collaboration with the AVAA-team of the 

ATT-initiative and GTK. The finished materials will be hosted by the IDA service and the online 

interface will run on the AVAA open research data portal platform (Figure 2). One of the 

principal aims of the OpenFIRE has been to produce an EPOS (European Plate Observation 

System) -compatible web service for reflection seismic data (EPOS-IP WP6 & WP7 Teams, 

2015). 
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Figure 1. Locations of the FIRE transects on the tectonic province map of Finland (left) and an 

example view of the OpenFIRE map interface for FIRE 3 profile on a mobile device (right). 

 

3. Verification, documentation, and re-processing of the FIRE data 

The first goal of the project has been to produce and store a coherent database of all FIRE-

related raw data, materials, and data products. Unlike other web-services that offer open 

reflection seismic data, OpenFIRE works on all levels of “data taxonomy” (Jefferey et al., 2015) 

from raw data (level 0) to intermediate data products (level 1; e.g., stacks and statically 

corrected data), interpreted materials (level 2; e.g., geological models), and integrated 

community-based materials (level 3; e.g., research catalogues). 

OpenFIRE assembles material from all the major processing steps and thus makes the 

entire workflow visible to the end-user. In the online database, the files have been grouped into 

data classes (e.g., "Field records", "Shot gathers", "Observer's notes", "Pole coordinates", 

"DMO stacks") to facilitate subsequent filtering procedures. Each file has been assigned a 

unique URN (Uniform Resource Name) by which it can be identified. The persistency and 

uniqueness of the identifiers is ensured by the National Library of Finland. 

OpenFIRE is conducted with a strict focus on quality. A comprehensive errata is available 

for all profiles, and quality-controlled versions of shot gathers have been prepared for the entire 

FIRE project at the Institute of Seismology. Typical errors in the original data include missing 

coordinates, duplicate traces, and false numeric values. Occasionally even the observer's notes 

themselves have been lost. 

The shot gathers have been repackaged into SEG-Y (Society of Exploration 

Geophysicists Y-format) files that each contain at maximum around 100 shots (10 kilometres). 

Where shot points have been skipped, the file size is accordingly smaller. All relevant SEG-Y 

headers, including the textual and binary header, are set. Both NMO (normal moveout) and 

DMO (dip moveout) stacks are distributed as un-migrated, migrated, and depth-converted 

versions and all modifications are strictly documented. 
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4. OpenFIRE online user interface  

The second goal of the project has been to build an online map-based interface for browsing, 

accessing, and downloading the archived material, which would be capable of catering to the 

needs of a diverse set of user segments. The visual map- and section-based interfaces and 

geological descriptions have especially been designed to orientate the geologist end-users, who 

have a high user potential but may require a more familiar context to utilize the service due to 

the rather technical nature of the available materials. Information on the surface geology and 

existing interpretations of deep crust structures along the FIRE profiles is organized into 

description entities that can be accessed through a series of dedicated web pages. The geological 

descriptions include comprehensive lists of pertaining scientific references and additional 

sources of information. 

Parsing the header information into a relational database enables the possibility for 

database queries matching information in the dataset to other logical models describing the 

geology of the Fennoscandian Shield. With this approach the GTK open data repositories have 

been linked to the seismic records. Procedural methods are used to generate an agnostic 

visualisation of reflectors in the dataset correlating to bedrock units mapped from the surface. 

In another visualisation view the user can see an expert opinion on the bedrock structure as 

viewed by the geoscientific community accompanied by proper academic citations. 

The "seismologist's interface" is separate from the section-based interface, and is aimed 

to allow the easy downloading of shot gathers and exploring the related metadata. The 

application relies on download models, i.e., the download orders made in the section-based and 

shot-gather-based interface are by default customised by the expected type of use. OpenFIRE 

also provides a filtering-table approach for accessing the entire FIRE data at once. 

The infrastructure of the web service is compliant with the EPOS ICS-TCS Level 2 

Integration Guideline (EPOS-IP WP6 & WP7 Teams, 2015). The service is built over 

microservices, some of which are externally produced by Finnish government organisations 

(i.e., GTK and the National Land Survey of Finland – NLS). External services include 

geological, general, and topographic maps and the data download API (Application 

Programming Interface). Georeferenced images of stacked data and geographical data 

describing source point and common depth point locations will be provided over OGC (Open 

Geospatial Consortium) APIs. CERIF (Common European Research Information Format) 

compatible metadata describing the project will be stored in a metadata catalogue. Guidelines 

for initializing a computing environment will be provided. The infrastructure of the service is 

suitable for scaling up the amount of data in the service and its modularity makes it possible to 

change a single microservice to another depending on requirements and resources. 

The user interface and the visualisation methods used in the map view are suitable for 

visualising other types of data as well. The authors are not aware of other similar EPOS 

compliant services and thus propose the results of the OpenFIRE project to be used as a 

reference realisation in the field of reflection seismic data. 
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Figure 2. A schematic diagram of the interdependencies and relationships between different 

entities related to the services produced by the OpenFIRE project. The end-user can browse the 

desired FIRE database materials through the web service and place a data product order that 

will be fulfilled by a dedicated e-mail service. 

 

5. Beta test and community engagement 

By November 2016 the OpenFIRE project has entered open beta testing with first-order 

functionality and a limited dataset that encompasses the FIRE 3 profile. The product will be 

honed and developed based on user feedback and the final launch with full datasets and 

functionality will happen in early 2017. The entire Finnish lithosphere research community is 

invited to take part in the beta and to provide feedback on the contents and usability of the 

service. OpenFIRE usage statistics will be logged and together with user feedback reports will 

be compiled for the scientific community. 

 

The OpenFIRE service can be accessed through the project portal at:   

www.seismo.helsinki.fi/openfire 
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Zenodo. http://doi.org/10.5281/zenodo.34666 

Jefferey, K.G., Bailo, D., Euteneuer, F., Ulbricht, D., 2015. Report on EPOS e-infrastructure prototype. Zenodo. 
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Structure of Suasselkä Postglacial Fault in northern Finland 

obtained by analysis of local events and ambient seismic noise 
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In our study we investigate seismicity and inner structure of Suasselka post-glacial fault in northern Fennoscandian 

Shield using analysis of local seismic events and ambient seismic noise recorded by the temporary 

DAFNE/FINLAND array. As a result of experiment and data interpretation, we found a number of natural seismic 

events originating from the fault area, which proves that the fault is still seismically active. In addition, analysis 

of ambient seismic noise recorded by the array demonstrated that that the area of the SPGF corresponds to a narrow 

region of low S-wave velocities surrounded by rocks with high S-wave velocities. We interpret this low velocity 

region as a non-healed mechanically weak fault damage zone (FDZ) that remained after the last major earthquake 

that occurred after the last glaciation.  
 

Keywords: Post-glacial faults, intraplate seismicity, ambient noise, empirical Green’s 

functions, fault damage zone 

 

1. Introduction 

For understanding mechanisms of intraplate seismicity studying of seismogenic faults structure 

and properties is of particular importance. Traditionally, this studies concentrate on mapping 

the seismic source using recordings of seismic events (fault plane and centroid moment tensor 

solutions, distribution of events locations). The inner structure of fault zones  can be also studied 

using structural geology, palaeoseismology, seismic reflection and refraction experiments and 

geodetic measurements. In our study we investigate the inner structure of the Suasselkä post-

glacial fault (SPGF) using distribution of hypocentres of local seismic events and analysis of 

ambient seismic noise recorded by the temporary DAFNE/FINLAND array (Afonin et al., 

2016). The project was performed by several organizations in Finland (Geological Survey of 

Finland, Sodankylä Geophysical Observatory of the University of Oulu and Institute of 

Seismology of the University of Helsinki). The DAFNE/FINLAND array comprised the area 

of about 20 to 100 km and consisted of 8 short-period and 4 broad-band 3-component 

autonomous seismic stations installed in the close vicinity of the fault area. The array recorded 

continuous seismic data during September, 2011-May, 2013. 

 

2. Detection and location of seismic events 

One of the problems for studying of natural seismicity in northern Finland is a huge number of 

production and development blasts originating from numerous mines and quarries. The DAFNE 

array recorded up to 100 of such blasts per day from northern Sweden, Russia and Finland. Due 

to this, it was not possible to use automatic event detection and manual data analysis was used. 

As a result of this analysis, we distinguished two types of events originating from our target 

area, but having different waveforms: 

1) Blasts originating from the Kittilä mine; 

2) Events originating from the SPGF area and its surrounding that could be of natural origin. 

From them we found and relocated about 40 events that could be of natural origin. Hypocentres 

of events originating from the SPGF zone have depths up to 8.5 km and epicentres show good 

spatial correlation with the fault. This is indication that the fault zone is still seismically active. 
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3. Ambient seismic noise analysis 

Analysis of azimuthal distribution of ambient noise sources during the experiment showed that 

this distribution is uniform during the time period considered. This was a necessary 

precondition for estimation of Empirical Green’s Functions (EGF) by stacking of ambient noise. 

In our study we use the procedure described in Poli et al. (2012, 2013) in order to calculate EGF 

from continuous recordings of vertical component of all stations of the DAFNE array. The 

functions were then used to estimate surface wave dispersion curves which, in turn, were 

inverted in order to obtain seismic velocities in the uppermost crust of the SPGF area. Analysis 

of distribution of dispersion curves demonstrated that it is generally bi-modal and the set of all 

curves can be splitted into two groups. The first group (Group 1) is composed of the pairs in 

which stations are installed on different sides of the fault or on top of fault and the second group 

(Group 2) is composed of the pairs of stations installed on the same side of the fault or if one 

of station installed on top of fault.  We calculated separately averaged dispersion curves for 

EGFs corresponding to two groups of pairs of stations and inverted them using the Geopsy 

software (http://www.geopsy.org). The inversion revealed significant (about 1000 m/s) 

difference in seismic velocities inside the fault zone and outside the fault zone. 

 

4. Results 

Two major results obtained in our study can be formulated as follows: 

1) Suasselkä Post-Glacial Fault zone is still seismically active, as shown by distribution of 

hypocentres of local earthquakes from the fault area detected by the DAFNE array; 

2) Analysis and inversion of averaged dispersion curves obtained from EGFs for two groups of 

seismic stations pairs (e.g. the pairs in which stations are located on opposite sides of the fault 

and the pairs in which stations are located outside the fault) revealed significant low S-wave 

velocity zone inside the SPGF area. We interpret this feature as a non-healed mechanically weak 

fault damage zone (FDZ) that remained after the last major earthquake that occurred after the 

last glaciation. This suggests that the SPGF has the potential for future reactivation. 
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Poli, P., Pedersen, H. A., Campillo, M. and the POLENET/LAPNET Working Group, 2012. Emergence of body 

waves from cross-correlation of short period seismic noise. Geoph. J. Int. 188, 2, 549-588. 

Poli, P., Campillo, M., Pedersen, H. and the POLENET/LAPNET Working Group, 2013. Noise directivity and 

group velocity tomography in a region with small velocity contrasts: the northern Baltic shield  application 
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Magnetotellurics (MT) is an electromagnetic geophysical method where temporal variations of the natural 

electromagnetic field of the Earth are measured on its surface. The measurements contain information about the 

electrical conductivity structure of the subsurface down to hundred kilometres and more. We analyse MT data 

collected within the Magnetotellurics in Scandes (MaSca) -project. In the Summer  2014 we measured total of 79 

MT sites in Northern Finland. The site array is centred on the Central Lapland Granitoid Complex and covers parts 

from the Peräpohja Belt and the Central Lapland Area. This is the first time extensive MT studies are being 

conducted in the area. With site spacing of 10‒40 km and a period range of 0.001‒10000 s, the data set contains 

information about the  large scale conductivity structures of the crust and upper mantle below the site array. The 

complex geological setting requires three-dimensional (3-D) inversion to infer the conductivity variations in the 

most realistic manner. We will discuss the foremost features of the MT data set and present the first steps towards 

geologic implications. 

 

Keywords: electromagnetic, magnetotellurics, array measurements, central lapland granitoid 

complex 

 

1. Description of the 2014 MT data set 

During April‒June 2014 in total 79 broadband (BMT) and long period (LMT) MT sites, 

supported with vertical magnetic field measurement at each site, were installed (Fig. 1a, black 

symbols).  Site spacing is ca. 10‒20 km for BMT and 20--40 km for LMT. Most of the 

measurements were conducted with the MTU2000 system developed in the University of 

Uppsala (Smirnov et al., 2008a).  The installed electric line lengths ranged between 70--100 m, 

depending on site conditions. The BMT sites were occupied for 20--48 hours (with exceptions 

towards longer times), whereas the LMT sites were occupied approximately for 3‒4 weeks. 

Data from total of 56 BMT and 23 LMT sites are available. In all installations, the horizontal 

EM fields were measured in the geomagnetic N-S and E-W directions as obtained from 

handheld compass.   In 2014, magnetic declination ranged between 10‒12 degrees in the 

measurement area, growing towards East. 

 

From the raw electric and magnetic field time series, transfer functions (impedance tensor and 

tipper) were derived using a robust remote-reference processing code (Smirnov, 2003; Smirnov 

& Pedersen, 2009).  Good quality transfer functions were obtained with period ranges 

approximately of 0.003‒1000 s and 10‒10000 s for BMT and LMT data, respectively. All 

transfer functions have been rotated to geographic coordinates for further analysis. The transfer 

functions allow us to infer the regional conductivity structures in crustal and lithospheric scales. 

We have also extended the limits of the array with MT data from EMMA 2007  (Smirnov et al. 

2008b) and MaSca 2013 (Cherevatova et al. 2015), see Figure 1. 
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Figure 1. Location map. a) Magnetotelluric sites on a simplified geologic map (Korsman et 

al. 1997). b) Large scale geologic domains. The red rectangle shows approximately the 

measurement area extent. CLA=Central Lapland Area, CLGC=Central Lapland Granitoid 

Complex, KB=Kuusamo Belt, PB=Peräpohja Belt, PC=Pudasjärvi Complex 

2. Results 

Preliminary analysis reveals a complex data set requiring 3-D inversion codes. Most complex 

data responses are found in the belt areas of Peräpohja Belt (PB) and Central Lapland Area 

(CLA). These are due to strong near-surface and deeper crustal conductors. Most part the 

Central Lapland Granitoid Complex (CLGC) is implied as a resistive structure crossing the 

array all the way from East to West and extending deep in to the mantle. The data set also hints 

existence of a deep conductor (~200 km), possibly the lithosphere-asthenosphere boundary. 

These tentative interpretations need more analysis for further implications and confirmation. 
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Smirnov, M., 2003. Magnetotelluric data processing with a robust statistical procedure having a high breakdown 

point, Geophys. J. Int., 152(1), 1–7. 
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This on-going study focuses on the reprocessing of the historical BABEL (Baltic and Bothnian Echoes from the 

Lithosphere, 1989) seismic lines in the Bay of Bothnia in preparation for the acquisition of a 400 km long onshore 

reflection and refraction profile in central part of Sweden. The main aim of the project is to increase the 

understanding of the tectonic evolution of the mineral-rich Bergslagen region both offshore and onshore. The 

seismic data have been recovered and currently being reprocessed using up-to-date processing methods and 

preliminary results show promising outcome from this work. 

 

Keywords: BABEL, Bergslagen, crust, Moho, seismic imaging, reprocessing 

 

1. Introduction 

In September and October 1989, over 2200 km of offshore seismic lines were acquired in the 

Baltic and Bothnian Sea (BABEL Working Group, 1990). These data were fundamental on 

some of the understanding of the Paleoproterozoic plate tectonic, a matter of debate remained, 

but also several major crustal-scale structures observed from the upper crust all the way to great 

depths and likely some reaching the Moho. To improve and revaluate imaging capability of the 

BABEL data and hence the whole crust in the Bergslagen region in central Sweden, lines 1, 6 

and 7 (Figure 1) have been chosen for now. A particular focus will be given to the northern 

boundary of the Bergslagen in order to study its nature and geological implications. 

Sponsored by the Swedish Research Council (VR), the reprocessing results will serve as 

a basis for the preparation of a proposed onshore refraction and reflection profile in central 

Sweden, parallel to lines 1 and 6, planned to be acquired in early 2017. 

 

2. Preliminary result 

Up to now, only seismic data along line 7 have carefully been processed up to prestack level 

(Figure 2). This included spherical divergence correction, FK-filtering, deconvolution, velocity 

analysis and NMO corrections. This line has a total length of 174 km and consists of 2322 shot 

points (Table 1) with air guns as the seismic source (BABEL Working Group, 1993). Given the 

earlier success with DMO correction (Shahrokhi et al., 2012), we hope additional processing 

steps such as DMO corrections combined with residual statics, and coherency enhancement 

methods and migration will significantly improve the imaging results near the surface and likely 

ready for the time we present these results. 
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Figure 1. (a) Topography and bathymetry, (b) geological and (c) Moho depth maps of the areas 

around BABEL seismic lines. FIRE seismic profiles (blue line), seismological stations (stars) 

and the proposed onshore seismic profile (dashed line) are also shown. Moho depth map is 

plotted based on the data from Grad et al. (2009). 

 

 
Figure 2. Preliminary stacked section of BABEL line 7 reprocessed in this study. 

 

3. Outlook 
BABEL seismic data are not only historical but also contain valuable and unique information 

about the overall tectonic structures of the Baltic Shield. BABEL lines 6 and 1 will be 

reprocessed to provide continuity from one line to another and consistent interpretation of the 

results in the northern boundary of Bergslagen region. One of the aims of the reprocessing is to 

image reflections that are hidden in the source-generated noise in the shallow subsurface  

(< 3 km depth) to be able to better link the deeper reflections to near surface information. 
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Table 1. Acquisition parameters of BABEL survey (BABEL Working Group, 1993). 

 

Line 1 6 7 

No. of shots 4283 3979 2322 

Shot interval (m) 75 62.5 75 

Profile length (km) ~ 321 ~ 249 ~ 174 

Receiver group interval (m) 50 50 50 

Receiver cable length (m) 3000 3000 3000 

Record length (s) 25 23 25 

Sampling rate (ms) 4 4 4 
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Ultramafic rocks in the middle crust do not necessarily have to be of igneous origin. In the granulite area of 

southwestern Finland, an outcrop contains an ultramafic rock with orthopyroxene (En65), amphibole 

(tschermakite), interstitial plagioclase (An90) and some biotite (Mg# = 75). Veins and melt sinks of a coarse-grained 

rock with graphic intergrowths of plagioclase (An31) and tourmaline (dravite, Mg# = 0.66) appear in the ultramafic 

rock. The outcrop was investigated with both petrological and experimental methods. The result of the study was 

that the amphibole-orthopyroxene-plagioclase rock represents the melanosome after fluid-induced partial melting 

of the surrounding amphibolite. Laboratory experiments indicated that boron did not have an influence on the 

petrological processes. 

 

Keywords: lithosphere, middle crust, partial melting, amphibolites 

 

1. General 

The metamorphic peak in the granulites in southwestern Finland has been determined to 5-

7 kbar and above 800 °C at 1.84–1.82 Ga (Väisänen & Hölttä, 1999). In these conditions 

metapelites melt by dehydration melting, but metavolcanites (amphibolites) need temperatures 

higher than 850 °C before dehydration melting can start. However, melting of amphibolites can 

be seen in the Turku granulite area. Usually the melting is identified as tonalitic leucosomes 

with clinopyroxene and orthopyroxene, and a melanosome of amphibole, clinopyroxene and 

orthopyroxene.  

An ultramafic body is found in a metavolcanite in the Late Svecofennian granite–

migmatite zone of southern Finland (Ehlers et al., 1993). The best outcrop is by Café Piikkiö 

by the Turku–Helsinki highway.  

The ultramafic rock is coarse-grained and consists of sub- to euhedral-shaped amphiboles 

(tschermakite and cummingtonite), corroded orthopyroxene (En65) mantled with 

cummingtonite, some biotite (Mg# = 75) and plagioclase. The plagioclase (An90) appears as 

interstitial films or irregular crystals. The opx are corroded with reaction rims of 

cummingtonite. In the ultramafic rock, veins and melt sinks with plagioclase (An31), quartz 

and tourmaline (dravite)—often as graphic intergrowths—appear. Sometimes the tourmalines 

are up to 10 cm in size. 

In granitic systems, boron may decrease the solidus temperature with more than 100 °C 

(Pichavant, 1987; Holtz & Johannes, 1991; Dingwell et al., 1996). According to Kriegsman 

(1999), the outcrop was formed either by infiltration of granitic melts in a partially melted mafic 

rock, or by infiltration of boron rich fluids that initiated partial melting in the amphibolites. 

However, the effect of boron in anatexis of metabasites is unknown.  

The high amounts of tourmaline in the rock indicate a high boron activity when these 

rocks were formed. Since temperatures around 850 °C (about 50 °C above the metamorphic  

temperature in the area) are needed before dehydration melting is initiated in amphibolites, we 

wanted to test a hypothesis that high boron activity may have decreased the solidus temperature 

of the amphibolite, and thereby initiated the partial melting. 
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2. Experiments  

To test the hypothesis, a series of experiments were done at the laboratory of the Department of 

Geology, Tromsø University, Norway. 

As starting material for the experiments, an amphibolite from Torsholma (Åland Island) 

was selected. The modal composition of the amphibolite was magnesiohornblende 50.6 %, 

plagioclase (labradorite) 39.9 %, quartz 8.5 %, biotite 0.6 % and opaque 0.4%. 

In the experiments, an end-loaded piston cylinder apparatus with a NaCl-MgO-C-cell 

with a diameter of 1.27 cm was used. Gold capsules were filled with 50 mg amphibolite rock 

powder with grain size 10–20 µm and varying amounts of H3BO3 and distilled water. 

Experiments were made at a pressure of 5 kbar and 750, 800 and  850 ºC. Running time for the 

experiments was between 114 and 535 hours. 

 

3. Results of the experiments 

The general formula for the melting reaction of the amphibolite was:  

 

plagioclase + quartz + hornblende1 + fluid = melt + hornblende2 ± clinopyroxene 

 

Water was the most important agent that depolymerised the initial plagioclases and quartz, 

whereupon a water-rich tonalitic melt was formed. The restitic plagioclase had a high An-

content. Since water stabilizes hornblende, a second generation was formed instead of 

pyroxenes. 

The results of the experiments show that boron did not affect the melting process 

significantly. On the contrary, the experiments with the highest boron content produced the 

smallest melt fraction at 850 °C. The melt fraction at 850 °C with 0–0.25 % B2O3 was 40–45%, 

and with 0.5–1 % B2O3 30–35 %.  

 

4. Comparison to the studied outcrop 

The studied outcrop contains only a few % melt, the interstitial plagioclase is An90, and the 

mineralogy of the ultramafic rock contains tschermakite, cummingtonite and biotite. This 

indicates that the melting of the amphibolite took place in an open system where external fluids 

decreased its solidus and generated melting. The melt sink structures, the low leucosome 

content in the rock and the high An content in the restitic plagioclases indicate that the outcrop 

is melt-depleted. The tourmaline-bearing leucosomes are interpreted as differentiated melts that 

did not leave the system. 

 

5. Discussion 
Usually mafic rocks contain very low contents of boron (2–35 ppm), but the amphibolites at 

Piikkiö contain 50 ppm B. This indicates that the boron must be external, originating most 

probably from the surrounding S-type granites and pelitic migmatites.  

A scenario may be that boron rich fluids escaped from the granites during the retrograde 

stage of the metamorphism. The fluids invaded the amphibolites and decreased their solidus 

until partial melting was initiated. The hydrous mineral assemblage in the ultramafic rock 

indicates a high fluid content in the process. Despite the partial melting, the following reactions 

support influx of fluids from an external source: 

 

Orthopyroxene + H2O => cummingtonite 

 

Cummingtonite + plagioclase + H2O => tschermakite 
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6. Conclusions 

This study shows that during the 1.83 Ga metamorphic event, fluids from metapelites invaded 

metabasalts, reduced their solidus temperature and initiated partial melting. This resulted in 

tonalitic magmas and restites comprising amphiboles, pyroxenes and anorthite, showing that 

all tonalites are not pre- or synorogenic, and all ultramafic rocks are not from the mantle. 
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K-Ar dating was performed on a fresh clay that was filling a crevasse in Savio railway tunnel, Myras, Vantaa. 

The ages for different grain sizes vary from c. 967 to 697 Ma. The original faulting is assumed to have taken 

place before 967 Ma related to the collapse of Sveconorwegian orogeny in the west. Sedimentation in a shallow 

marine intracratonic basin and neocrystallization of illite followed at c. 967 Ma. Continental break-up caused 

reactivation in the fault and the smaller autigenic illite crystals were formed during the movements in c.679 Ma. 

 

Keywords: clay, K-Ar dating, Neoproterozoic, Finland 

 

1. Introduction 

The bedrock in southern Finland is mainly of Paleoproterozoic origin. The last event that had a 

major effect on the basement was the 1650 Ma rapakivi magmatism. In late stages of the event 

brittle strike-slip and normal faults were formed in transcurrent conditions (Elminen et al. 

2008). Other, more well-known brittle structures are the grabens in Satakunta and Muhos that 

have formed before 1270 Ma and 1400 Ma, based on the diabases crosscutting the sedimentary 

rocks in Satakunta (Suominen, 1991) and on the K-Ar and Rb-Sr-dating of sediments in Muhos 

(Simonen 1980), respectively.  

However, numerous brittle faults and joints that crosscut the basement have not been 

dated because of the lacking fresh exposure. The weathering of faults near the surface excludes 

the possibility of K-Ar dating of illite that is common in fault gouges. Recently, K-Ar ages of 

1006.2 ± 20.5 Ma and 885 ± 18.3 Ma from gouges in drill cores were obtained in Olkiluoto 

(Viola et al. 2013). 

A discovery of a clay-filled fault at Savio railway tunnel constructions at Myras, Vantaa 

provided a unique opportunity to investigate faulting, tectonics and sedimentation. Illite from 

fresh clay samples was dated by K-Ar method. 
 

2. The fault and dating approach 

The clay deposit was discovered underground while a railway tunnel was excavated at Myras, 

in 60 m depth, and was examined both in the tunnel and two drill cores. The deposit forms a 

steep NNE-trending 30-70 cm thick clay-filled crevasse, associated with a 5-cm-thick arenite. 

The homogenous greenish gray clay consists mainly of illite with some quartz, K-feldspar and 

chlorite. In addition steep slicken-lines were observed in the tunnel. A decanted coarse fraction 

of the clay consists of well-rounded quartz grains supporting the sedimentary origin of the clay 

instead of mechanically crushed gouge, which is a common clayish material in faults. The 

arenite is mature containing well-rounded quartz grains and calcite cement. Some feldspar, 

muscovite, illite grains and glauconite both as a grain and cement are also present. 

Transmission Electron Microscopy (TEM) images reveal fibrous, hexagonal and 

prismatic morphologies for the fine grained illite, suggesting in situ neocrystallization (Clauer 

and Chaudhuri, 1995). The illite fractions < 0.1 to 2-6 μm were used for dating. The clay 

fraction yield Neoproterozoic ages from 697.3 ± 14.1 (Cryogenian) to 967.6 ± 19.7 Ma 
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(Tonian). A classical consistent decrease in age with decreasing grain size can be observed. A 

total age span of 270 My is recorded within the clay fractions ranging from the Cryogenian for 

the finer <0.1 and <0.4 µm fraction to the Tonian for the coarser <2 and 2-6 µm fractions. 
 

3. Discussion 

The authigenic illite was formed after the sedimentation. Thus the fault has been opened before 

967 Ma. The relative textural and compositional maturity of the sand fraction and glauconite 

appear to be compatible with the continental shallow marine depositional setting, likely in an 

intracratonic basin. The Neoproterozoic age estimation of c. 970 Ma provides evidence for 

deposition within a time interval where sedimentary records from Fennoscandian shield are 

scarce, and geochronological data almost non-existing. 

The fault geometry suggests extensional conditions and the age is consistent with the 

collapse of Sveconorwegian orogeny in the west, estimated to have commenced after 970 Ma 

(Bingen et al. 2006). The smaller 697 Ma illite fraction is probably attributable to reactivation 

of the fault, likely related to continental break-up that started around 800-700 Ma in the west 

(Kumpulainen & Nystuen 1985). These and congruent ages from Olkiluoto suggest that at least 

some of the brittle structures in the Paleoproterozoic bedrock in southern Finland have been 

formed in Tonian and Cryogenian times reflecting these collapse and break-up events  in the 

edge of the Fennoscandian shield. 
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There is an ongoing debate regarding whether processes intrinsic to the lithosphere (“Plate”) or the convecting 

mantle (“Plume”) give rise to currently active volcanic provinces. The Plume hypothesis has the disadvantages 

that its predictions often are not verified by observation, but that at the same time the hypothesis is intrinsically 

unfalsifiable. A Plate-based model for the Yellowstone volcanic province, USA, is described and compared with 

the Proterozoic Musgrave volcanic province, Australia. Some outstanding potential questions that could be 

addressed with lithospheric studies are introduced.  
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1. The Plates vs. Plumes controversy 

The Plume hypothesis envisages a large, thermal diapir that rises from the core-mantle 

boundary, actively penetrates the lithosphere, and causes surface volcanism. It forms 

independently of shallow structures and processes, and is driven by thermal energy from Earth’s 

core.   

The Plate hypothesis is the conceptual inverse. It envisages magmatism to be driven by 

shallow processes driven ultimately by plate tectonics (Foulger, 2010; Foulger & Jurdy, 2007; 

Foulger et al., 2005; http://www.mantleplumes.org/). In this model, magmatism is a passive 

reaction to lithospheric extension and its quantity and chemistry reflect source fusibility and 

composition.  Thus magmatism is expected to occur preferentially near extensional plate 

boundaries, e.g,, the mid-Atlantic ridge, and in continental rift zones, e.g., the East African Rift. 

The mere existence of melt in the mantle is not sufficient to explain surface eruptions. 

Lithospheric extension is required to release it. Where volumes are large, the chemical 

fingerprints of high source fusibility are expected. 

The Plates vs. Plumes controversy basically amounts to a shallow-lithosphere vs. deep-

mantle controversy. Much of the work done to address this controversy uses seismic 

tomography of the mantle, and the geochemistry of erupted lavas. However, not only are these 

techniques almost powerless to inform us about the lithosphere, which critically involved, but 

they are intrinsically unable to deliver the information needed to solve the controversy. Thus, 

much work looks in the wrong place and uses the wrong tools.  

The Plate hypothesis can only be tested by studying the lithosphere. Predictions of the 

Plume hypothesis related to the lithosphere include:  

 kilometer-scale domal uplift occurs some millions of years prior to the eruption of flood 

basalts associated with the arrival of a plume head,  

 large volumes of melt can only form if the lithosphere is thinned prior to eruption, so 

sufficient decompression melting can occur, and 

 ongoing “plume tail” volcanism forms a time-progressive trail on a moving plate.  
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Predictions of the Plate hypothesis related to the lithosphere include: 

 magmatism is accompanied by extension, 

 the pattern of vertical motions reflects the process at work, e.g., continental rifting or 

lithosphere delamination, and 

 ongoing volcanism, if it occurs, follows the locus of ongoing extension. This may 

become extinct rapidly, persist at the same locality, or migrate. 

 

2. A currently active example: Yellowstone 

An example of a currently active volcanic province is the Yellowstone system (Figure 1). It 

comprises the ca. 17 Ma Columbia River flood-basalts, a time-progressive chain of rhyolitic 

calderas blanketed with non-time-progressive basalts (the Eastern Snake River Plain), and the 

currently active Yellowstone volcano. The Plume hypothesis postulates that these eruptives 

correspond to an arriving plume head followed by time-progressive “plume-tail” volcanism. 

  

 
 

Figure 1. Map of the northwestern United States showing basin-range faults, and basalts and 

rhyolites of 17 Ma and younger. Approximate age contours of rhyolitic volcanic centers (~12, 

10, 8, 6, 4, and 2 Ma) across the northeast-trending Eastern Snake River Plain are shown. A 

contemporaneous trend of oppositely propagating rhyolitic volcanism that trends northwest 

across central Oregon is indicated by similar contours (from Christiansen et al., 2002). 

 

 

There are, however, numerous geological mismatches and logical flaws in this model. 

Mismatches include lack of uplift precursory to the eruption of the Columbia River Basalts, 

spatial mismatches between the predicted and observed sites of subsequent “plume tail” 

volcanism, volcanic activity along the Eastern Snake River Plain prior to the predicted plume-

tail arrival time, persistent, scattered basaltic volcanism there, and mirror-image backward-

propagating volcanism in the High Lava Plains region to the west (the “Newberry trend”). 

Logical flaws include citing high-3He/4He isotope ratios and the time-progressive trail of silicic 
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calderas along the Eastern Snake River Plain as evidence for a “shallow-mantle plume”. In the 

plume model, high- high-3He/4He isotope ratios require an origin at the core-mantle-boundary. 

Also, the Plume hypothesis requires that the melt locus is fixed relative to Hawaii. This, in turn, 

requires plumes to be rooted in the deep mantle where they cannot be displaced by the vigorous 

shallow convection associated with plate tectonics. A model that postulates a plume rooted in 

the shallow mantle, but appeals to arguments that require a core-mantle-boundary origin, is 

internally inconsistent. Furthermore, no seismic tomography has imaged a deep-mantle plume 

beneath Yellowstone, despite numerous published studies.  

The Plate hypothesis predicts that time-progressive migration of volcanism results from 

time-progressive migration of lithospheric extension (Foulger et al., 2015). Such migration of 

extension in the region is well-documented. Lithospheric extension and thinning is associated 

with the adjacent basin-range region. Superimposed on this, the most intense extension 

occurred in a northerly trending zone ~ 125 km wide that migrated systematically from the 

central basin-range region to its present position at the eastern edge of the province over the 

last ~ 17 Ma. Bimodal rhyolite-basalt volcanism followed migration of this locus of intense 

extension.  

 

3. A Proterozoic example: The Musgrave province 

Yellowstone is an extraordinarily large and spectacular volcano and as a natural phenomenon it 

is extreme. However, it is not unique. Long Valley caldera in California is a somewhat smaller 

but similar bimodal volcano that erupted ~ 600 km3 of material at ~ 0.76 Ma (~ 25% of the 

great Huckleberry Tuff at Yellowstone). A Proterozoic example is the 1090 – 1040 Ma 

Musgrave volcanic province in central Australia. This event added mantle-derived melt to the 

crust including one of the largest mafic intrusions ever produced and the Warakurna large 

igneous province which extends over and area of ~1.5 x 106 km2. It also included huge volumes 

of felsic emplacements, one of the world's longest-lived rhyolitic centres, and the Talbot 

“supervolcano”. Magmatism there lasted more than 50 Ma and persisted in the same region 

with no discernible age-progressive spatial trend.  

High lithospheric temperatures are thought to have existed at this locality for ~ 100 Ma 

prior to magmatism. The main magmatic phase may have onset when the region was deformed 

by a shear zone that separated the Musgrave Province from the extending Capricorn Orogen 

(Smithies et al., 2015b). The province was described by Smithies et al. (2015a) as “analogous 

to compressing or superimposing the entire regional (>600 km) felsic magma track of the 

Miocene Snake River Plain-Yellowstone Plateau of North America…into a single volcanic 

centre”.  

Both Long Valley caldera and the Musgrave volcanic province are likely consequences 

of extension occurring where lithospheric structure is locally disjoint and, I suggest, is the 

Yellowstone system also. 

 

4. Some potential problems 

As the above observations highlight, and as Prof. Ilmo Kukkonen pointed out in a private 

communication, the controversy regarding litho-centric vs. a convecting-mantle-centric 

initiating processes for shallow magmatism can aid, and be aided by, studies of Proterozoic 

lithosphere. Some outstanding potential questions are: 

 

1. Is there evidence for melt reservoirs at the base of the lithosphere, that may be rapidly 

drained to form surface flood basalts? 

2. Can observed variations in lithosphere temperature be explained by radiogenic decay, 

or are temperature anomalies in the convecting mantle required? 
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3. What is the evidence for lithospheric thinning, resulting either from delaminations or 

thermal upwellings? 

4. Can extinct magmatic provinces be used to test the Plate and Plume hypotheses? 

5. What is the composition of mantle lithosphere? Can it explain the geochemical 

signatures observed in Phanerozoic flood basalts and volcanic provinces or are exotic 

mantle compositions and/or ancient subducted crust required? 

Ad hoc application of the Plume hypothesis can explain all volcanism, and fundamentally 

cannot be disproved. Thus, attributing all magmatism to mantle plumes offers little potential 

for improving our understanding underlying processes. On the other hand, testing the Plate 

hypothesis has the potential to contribute significantly, including addressing questions such as 

when plate tectonics started. 
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New 2D seismic reflection data have been acquired in Polvijärvi, Finland during autumn 2016 as a part of the 

COGITO-MIN project that aims to develop cost-effective mineral exploration methods with special focus on 

seismic techniques. Both vibroseis and explosive sources were used in the survey, and preliminary observations 

about the subsurface reflectivity are encouraging the hypothesis that upper crustal structures are imaged with these 

data. 

 

Keywords: seismic reflection profiling, upper crust, mineral exploration, Outokumpu  

 

1. Introduction 

Seismic reflection surveying has been the preferred tool of exploration within the petroleum 

industry for over 80 years. Despite their commercial success in the petroleum industry, 

reflection seismic methods are yet to make a similar, commercial breakthrough in hardrock 

environments and have mainly been used for research purposes. The primary reasons for the 

difficulties in hardrock terrains are related to the complexity of geological structures and subtle 

contrasts in the acoustic impedance between the target and its surrounding rock. Furthermore, 

the lithological variation in hardrock environments is often much greater than in sedimentary 

basins. However, results of petrophysical studies (e.g. Luhta et al., this volume) are encouraging 

the use of seismic reflection methods in hardrock terrain. Technological developments have 

increased the S/N ratio of the seismic data acquisition, and processing schemes tailored for 

hardrock conditions have further improved the results achieved in crystalline bedrock 

environments. The COGITO-MIN project – coordinated by the University of Helsinki – is 

developing cost-effective geophysical mineral exploration techniques, with main emphasis on 

seismic methods (Koivisto et al., this volume). Project partners from Poland and Finland, 

representing both academia and industry, are working together in the project with the aim to 

develop new data acquisition, processing and interpretation techniques. Locally, the goal is to 

achieve a better understanding of the subsurface structures in the vicinity of the Kylylahti mine, 

in Polvijärvi, Eastern Finland. As part of this project, new 2D reflection seismic data have been 

acquired. 

Kylylahti mine is located in Polvijärvi, within the north-eastern extension of the famous 

Outokumpu mining and exploration district in Eastern Finland. Kylylahti Cu-Au-Zn mine 

started production in 2012 and is currently owned and operated by Boliden Kylylahti. Mining 

is currently taking place at about 700 m depth, and the known ore reserves will last until 2020. 

Main rock type of the Kylylahti area is mica gneiss and copper ore of the Kylylahti is hosted 

by so called Outokumpu assemblage rocks (serpentinites with carbonate, skarn and 

quartzrocks) enveloped in sulphide bearing black schists. Because of their high conductivity, 

the black schists mask the response of the metallic ore deposits and pose a challenge to 

traditionally used electromagnetic exploration methods. One of the aims of the COGITO-MIN 
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project is to image the continuation of the ore-hosting rock sequence with seismic data and 

indicate new deep drilling targets that can lead to new discoveries, thus leading to extend of the 

mine’s life. 

 

2. Field work 

The seismic data in the Kylylahti area were acquired along two, almost parallel ca. 6 km long 

profiles. Geopartner, an industrial partner of the COGITO-MIN project, provided the wireless 

recording system and vibroseis sources used in the project (Figure 1a). Acquisition of the high 

resolution 2D seismic profiles (Figure 1b) was done within two weeks in August-September 

2016. A total of 577 receivers with 10 meter spacing were deployed for line A and 574 receivers 

for line B. With a total of 456 total source points, two types of sources were used; 125 or 250 g 

dynamite charges and two INOVA UniVib 9.5-ton trucks. Explosive sources were drilled to 

about 2 m depth. In each vibroseis source points, two Univib vibroseis sources (Figure 1a) 

produced three 16 s long, linear sweeps from 4 to 220 Hz in a tail-to-nose configuration. 

Nominal source spacing was 20 m. 

Explosives were used in areas not accessible for vibroseis trucks, in order to achieve as 

uniform source spacing along the profiles as possible. Vibroseis source points were located on 

the roads while most of the explosive source points were located along small forest paths, 

resulting in a crooked line geometry presented in Figure 1b on a geological map. Both survey  

 

 

Figure 1. a) Kylylahti seismic reflection data were acquired with wireless receivers and 

Univib-vibroseis sources owned by Geopartner, industrial partner of the COGITO-MIN 

project. Photo: Suvi Heinonen. b) Location of receivers and sources of the COGITO-MIN 

seismic 2D profiles in the Kylylahti area in 2016. Light crosses and dark stars represent 

vibroseis and dynamite sources, respectively. 
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lines cross the Kylylahti formation, and are expected to image the north-western and south-

eastern extent of the Kylylahti formation. Previous studies have indicated that the Kylylahti 

formation is located on a hinge of an overthrusted Outokumpu nappe (Figure 1b), and these 

newly acquired seismic data will possibly shed light to the dip of the earlier interpreted thrust 

zones. Kylylahti mine is located in the middle part of the profile B and the densely drilled mine 

area will provide good geological reference data for seismic interpretation. 

 

3. Comparison of vibroseis and explosive sources 

Both dynamite and vibroseis shot gathers were collected at six source locations to compare the 

two source types and also to aid parameter selection in data processing. Figure 2 shows a 

comparison of the vibroseis and explosive shot records. It is apparent from the data that the 

vibroseis record has a better signal-to-noise ratio when compared to the explosive shot gather. 

This is attributed to the fact that a vibroseis record is actually stack of three records allowing 

efficient suppression of noise. Both shot gathers show clear first breaks, indicating good quality 

of the data along the whole length of 6 km geophone spread. In both records, the same channels 

are contaminated by noise, suggesting uniform data acquisition circumstances. The shot gather 

acquired using an explosive source shows clearly a more prominent source induced ground roll 

(velocity 2300 m/s), that is supressed in the vibroseis records because of stacking. Reflections 

at 1800-2500 ms are especially apparent in the vibroseis shot gather. These reflections visible 

already in the unprocessed data are encouraging for future processing efforts.  

 

Figure 2. Comparison of a vibroseis source and a dynamite source shot gather on peg location 

A089. On the vibroseis gather, S/N ratio is increased by stacking three shot gathers measured 

at the same location together. 
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Figure 3. Spectral comparison of the vibroseis and dynamite shot gathers from Figure 4.  

 

Figure 3 shows comparison of amplitude spectrum of vibroseis and dynamite records presented 

in Figure 2. In both records highest amplitudes are recorded at 25-60 Hz, and it is apparent that 

high frequencies need to be enhanced in the future seismic processing. 

 

4. Conclusions and future work 

Preliminary insight to the 2D reflection seismic data acquired as a part of COGITO-MIN project 

shows that energy from both vibroseis and explosive sources penetrates down to depths of 

several kilometres, with reflections observed even in unprocessed seismic data. First breaks are 

clear along the whole spread enabling future refraction static model building and calculation of 

near-surface velocity model. Comparison of the vibroseis and explosive shot records acquired 

at the same location show that similar reflectivity is observed with both sources but prior to 

processing vibroseis records are less noisy due to stacking.  
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We represent new geochemical and isotopic data from the Jyväskylä-Kangasniemi area of southeast Central 

Finland Granitoid Complex (CFGC). The plutonic rocks represent mainly intermediate calc-alkaline rocks formed 

between ca. 1895 and ca. 1875 Ma. They are coeval with the supracrustal Makkola suite that likely represents 

continuum of classic Tampere group rocks. The plutonic rocks can be separated into several suites based on field 

relationships, geochemical composition and isotope data. Our new findings will further refine the earlier 

interpretations of relationships between these groups in space and time. Updated interpretations will contribute to 

our understanding of the central part of the Svecofennian orogeny. 

 

Keywords: Paleoproterozoic, Svecofennia, Fennoscandia, granitoid, age determinations, Hf-

isotopes 

 

1. General 

The Svecofennian bedrock grew by sequential accretion of arcs and thus its geological history 

is composed of episodic collision events. During crustal growth, uplifting, folding, and variable 

stages of deformation affected the still ductile crust. Our study area concentrates in the SE 

corner of the synorogenic Central Finland Granitoid Complex (CFGC) (Fig. 1). The area is 

located at the boundary between CFGC and Pirkanmaa migmatite and intrusive suites. This 

boundary coincides in most places with two geological features trending northeast A) 

Leivonmäki shear zone crosscutting the geological units and B) Makkola suite volcanic rocks 

occurring as discontinuous belt in the area.  

 

2. Intrusive units 

Southeast of the Leivonmäki shear zone the bedrock consist mainly of plutonic rocks belonging 

to the Pirkanmaa intrusive suite (mainly granodiorites and tonalites) and Lammuste quartz 

diorite lithodeme, which is the plutonic member of the Makkola suite. Rocks of both these units 

are ca. 1895 Ma in age and thus 10 Ma older than the main magmatic phase of the CFGC (1885–

1880 Ma; Nikkilä et al. 2016, Rämö et al. 2001). Porphyrite dykes belonging to the Makkola 

suite and crosscutting, both Lammuste quartz diorites and Pirkanmaa intrusive suite as well as 

the volcanic units indicate that all of these units formed a geological entity at ca 1895 Ma. 

The main magmatic phase of the GFGC that formed most of the crust northeast of the 

Leivonmäki shear zone, relates to the peak of the collisional phase in the area. This phase is 

slightly younger than the dominant volcanic activity within the Makkola suite, but partly 

overlaps with it. Plutonic rocks belonging to this phase have been divided into Muurame and 

Vaajakoski lithodemes. The previous includes the foliated K-feldspar porphyritic granitoids, 

making up the bulk of the CFGC and the latter contains quartz diorites and diorites. These 

coeval calc-alkaline plutonic rocks in our study area, and in other parts of the CFGC as well, 

Rämö et al. 2001, Nikkilä et al. 2016) were emplaced as numerous magma pulses with varying 

compositions. 

The bimodal Saarijärvi suite (1885–1875 Ma, Rämö et al. 2001 also called as 

postkinematic) partly overlaps in age with the Jyväskylä suite. It contain K-feldspar porphyritic 
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quartz montzonites and granites as variably sized intrusions as well smaller gabbro and diorite 

intrusions. The bimodality of this suite manifests it at both areal and outcrop scale, mafic 

intrusions commonly occur in contact with the granitoids and on outcrops different magma 

mingling structures are common. Compositionally the granitoids share A-type geochemical 

affinity. The magmas derived from relatively deep sources were able to descent via large scale 

faults providing sufficient pathways.  

Oittila suite consisting of granites and granodiorites and yielding ages of ca 1875 Ma are 

of the same as the as the youngest members of the Saarijärvi suite, although represent different 

types of magmas. Their often leucocratic composition hints to small degree of partial melting 

of pre-existing crust in the area. In field the Oittila suite forms crosscutting dykes and small 

intrusions, often intruding into relatively brittle structures.  

 

 
 

Figure 1. Geological map of the study area, northeast – southwest trending Leivonmäki shear 

zone divides the study area together with the Makkola suite forming discontinuous belt into 

Central Finland Granitoid complex (CFGC) and Pirkanmaa migmatite and intrusive suites 

(Mikkola et al., in review). 
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4. Isotopic results  

The rapid growth of the crust in the area, mere 20 Ma from ca. 1895 to ca. 1875 Ma, supports 

the previous scenarios for quick process of the crustal growth. To trace down possible 

involvement of significantly older crustal material in the genesis of the igneous rocks related to 

collision of arc material with the Archean crust during Svecofennian orogeny we have carried 

out a Lu-Hf study on zircons. The analysis were done from single crystal with ablation 

multicollector inductively coupled mass spectrometer (LAM-ICPMS). The average initial 
176Hf/177Hf values range in preliminary studied plutonic samples from 0.28151 to 0.28170 

(εHf = − 2.0 to 4.2: 2s ≤ 1.1), do not necessarily require the significant involvement of ca 2.1 

Ga component i.e. Keitele microcontinent of Lahtinen et al. (2005) in the development of the 

plutonic suites in the study area. But do not completely rule such involvement out either. 
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Magma-wallrock interaction in crustal magma chambers (a process known as crustal assimilation) is critical to the 

evolution of a magmatic system and formation of many of the most economically important base and precious 

metal deposits. Although such generalized model is largely accepted, details on how these interactions take place 

are relatively poorly characterized. One of the major issues has been the lack of models that integrate mass and 

energy exchange, thermodynamics and geochemistry. We propose to explore magma-wallrock interaction at three 

major intrusive complexes in Antarctica, USA, and Finland in a multidisciplinary study that includes state-of-the-

art computational modeling with recently developed energy-constrained equations. The modeling will be tested 

against existing and potentially new geochemical data and wallrock partial melting experiments that provide new 

insight into generation of layered intrusions and associates ore deposits. 

 

Keywords: magma chamber, assimilation, thermodynamics, geochemistry, experimental 

petrology, modeling 

 

1. Introduction 

There is considerable evidence that mafic intrusions vigorously react with the surrounding wall 

rocks during their emplacement (e.g., Johnson et al., 2003). Such interactions have notable 

effects on phase relations of the whole magmatic system, and thus also on the precipitation of 

base and precious metals in these systems (e.g., Benkó et al., 2013). The so-called AFC 

(assimilation-fractional crystallization) model (DePaolo, 1981) is a classical and the most 

widely used chemical assimilation model in geoscientific research. However, it does not 

provide any hint on whether its results are thermodynamically feasible or not. Instead, it mixes 

a compositionally fixed bulk contaminant into a magma body and does not allow progressive 

melting of crustal wallrock. Such limitations may significantly impact the mass balance of 

crustal and magma sources in the models of magmatic systems.  

The improvements in computational capacity have enabled ever more complex and 

larger dataset to be handled using personal computers and new tools to address how magma 

and wallrock interact have emerged over the last 15 years. First energy-constrained 

assimilation-fractional crystallization (EC-AFC) equations that account for mass and energy 

conservation in a magmatic system were developed by Spera and Bohrson (2001). Their latest 

contribution, Magma Chamber Simulator, (MCS; Bohrson et al., 2014) builds on these 

equations by adding thermodynamic constraints for a multicomponent + multiphase magma 

body that crystallizes in contact with a crustal wallrock and is recharged with batches of fresh 

magma (Figure 1). 

We propose to explore the petrologic and geochemical impact of magma-wallrock 

interaction at three major intrusive complexes in Antarctica, USA, and Finland (two of which 

are economically important) in a multidisciplinary study that includes computational modeling 
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using existing and potentially new geochemical data and wallrock partial melting experiments. 

EC-AFC and MCS models have mostly been used to study the evolution of volcanic systems 

so far; the proposed research will concentrate on layered intrusions and dive directly into the 

magma chambers, in which all of the aforementioned action takes place – the study will be the 

first of its kind. The research is funded by the Academy of Finland and will be conducted 2016–

2021. 

 

 
 

Figure 1. Crustal magma chamber processes that are taken account in our research. 

 

2. Case studies 

The ~180-million-year old Utpostane and Muren gabbroic intrusions are the first case study 

and are found in contact with continental flood basalts that belong to the Jurassic Karoo large 

igneous province in Antarctica. Geochemical evidence suggests that the magmas were 

contaminated in a two-stage process, first one involving the contamination of the magma with 

the underlying Precambrian basement, and the second one involving contamination with the 

surrounding flood basalts (see Vuori, 2004; Luttinen et al., 2015). The combination of these 

processes resulted in the gabbros becoming less radiogenic (in terms of Nd and Sr isotopes) 

towards the contacts with the present wallrock (hydrothermally altered basalt). To our 

knowledge, such compositional gradation has not been described before.  

The 1100-million-year old Duluth Igneous Complex is the second case study and is one 

of the largest magmatic Cu-Ni- and PGE-hosting intrusive complexes in the world. It is part of 

the Mid-continent rift and covers 5700 km2 west of Lake Superior. Interaction between footwall 

and mafic intrusion is regarded as one of the most important factors in the formation of the 

basal mineralization zones (e.g., Ripley and Al-Jassar, 1987; Benkó et al., 2015), but modeling 

of the interaction of partial melts from the Archean footwall with the mafic-ultramafic melts 

has not been performed. Furthermore, important source for the sulfur has been suggested to be 

the sulfide-rich metasedimentary formations also found in the contact of the igneous complex 

(e.g., Ripley and Al-Jassar, 1987; Queffurus and Barnes, 2014).  
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The Paleoproterozoic (~2440-million-year old) layered intrusions as part of the 

Fennoscandian large igneous province are found as a roughly E-W trending, 300-km-long belt 

in northern Finland and are the third case study. These intrusions are known to host all 

mineralization types characteristic of layered intrusions globally, including magmatic Cu-Ni 

sulphide, and PGE deposits similar to those found in Duluth (Iljina and Hanski, 2005). The 

contact zones with the footwall Archaean rocks are important hosts for magmatic sulphide ores 

and show modification in composition due to various degrees of magma-country rock 

interaction. Importantly, the highest known primary PGE concentrations in Fennoscandia are 

connected to these zones and related areas in the country rocks (Andersen et al., 2006). 

 

3. Approach 

Applying MCS (Bohrson et al., 2014) for the different (and possibly additional) case studies is 

the most important activity for our research. The MCS constraints that are usually the most 

difficult to estimate, are the trace element partition coefficients and partial melting behavior of 

the wallrock, however. The planned partial melting experiments can be assessed using the 

wallrock melting function in MCS. That is, we can directly compare the partial melt 

compositions from the experiments to those predicted by MCS. This “cross-checking” has not 

been done for MCS, and will have impact on our understanding of how MCS does in melting 

certain kinds of wallrock. To achieve this aim, melting experiments on representative wallrock 

samples will be performed at crustal pressures. The goal is to melt the wall rock alone, and to 

melt the wall rock together with the resident magma. The latter approach has never been done 

before either and the peritectic reactions involved may lead to a very different mineralogy that 

may further improve our understanding of assimilation mechanisms. The resulting glass (and 

residual mineral phases) will be analyzed for major and trace elements. 

Samples for the experiments will be collected from already existing field samples 

(Antarctica) and drill core archives (USA, Finland) of the case-study intrusions. Considerable 

amount of geochemical data already exists for all the localities, but additional geochemical 

analyses will also be performed, if necessary.  

 

4. Outcome of the project 

The expected results should be of great interest to both academic and non-academic institutions 

and mineral exploration and mining companies. Combining new methods of experimental 

petrology with MCS modeling and testing hypotheses in layered intrusions is expected to result 

in significant advancements in the field of petrology and ore geology. For example, mappings 

of “thermodynamically feasible” magma-wallrock pairs can potentially lead to new discoveries 

of base and precious metal deposits in the future. We emphasize that our research is not bound 

to the presented case studies and it is possible to include additional magmatic systems in the 

modeling. We therefore encourage collaboration between national and international teams who 

are working with different magmatic systems and their thermodynamic and chemical evolution. 

 

References: 
Andersen, J.C.O., Thalhammer, O.A.R., Schoenberg, R., 2006. Platinum-group element and Re-Os isotope 

variations of the high-grade Kilvenjärvi Platinum.ground elelemnt deposit, Portimo layered igneous 

complex, Finland. Econ. Geol., 101, 159-177. 

Benkó, Z., Mogessie, A., Molnár, F., Severson, M.J., Hauck, S.A., Raič, S., 2015. Partial Melting Processes and 

Cu-Ni-PGE Mineralization in the Footwall of the South Kawishiwi Intrusion at the Spruce Road Deposit, 

Duluth Complex, Minnesota. Econ. Geol., 110, 1269-1293. 

Bohrson, W.A., Spera, F.J., Ghiorso, M.S., Brown, G.A., Creamer, J.B., Mayfield, A., 2014. Thermodynamic 

Model for Energy-Constrained Open-System Evolution of Crustal Magma Bodies Undergoing 



LITHOSPHERE 2016 Symposium, November 9-11, 2016, Espoo, Finland 34 

 

 

Simultaneous Recharge, Assimilation and Crystallization: the Magma Chamber Simulator. J. Petrol., 55, 

1685-1717. 

DePaolo, D.J., 1981. Trace element and isotopic effects of combined wallrock assimilation and fractional 

crystallization. Earth Planet. Sci. Lett., 53, 189-202. 

Iljina, M., Hanski, E., 2005. Layered mafic intrusions of the Tornio–Näränkävaara belt. In: Lehtinen, M., Nurmi, 

P.A., Rämö, O.T. (Eds.), Precambrian Geology of Finland – Key to the Evolution of the Fennoscandian 

Shield. Elsevier B.V., Amsterdam, 101-138. 

Johnson, T.E., Gibson, R.L., Brown, M., Buick, I.S., Cartwright, I., 2003 Partial Melting of Metapelitic Rocks 

Beneath the Bushveld Complex, South Africa. J. Petrol., 44, 789-813. 

Luttinen, A.V., Heinonen, J.S., Kurhila, M., Jourdan, F., Mänttäri, I., Vuori, S., Huhma, H., 2015. Depleted mantle-

sourced CFB magmatism in the Jurassic Africa-Antarctica rift: petrology and 40Ar/39Ar and U/Pb 

chronology of the Vestfjella dyke swarm, Dronning Maud Land, Antarctica. J Petrol., 56, 919-952. 

Queffurus, M., Barnes, S.-J., 2014. Selenium and sulfur concentrations in country rocks from the Duluth complex, 

Minnesota, USA: implications for formation of the Cu-Ni-PGE sulfides. Econ. Geol., 109, 785-794. 

Ripley, E.M., Al-Jassar, T.J., 1987. Sulfur and oxygen isotope studies of melt-country rock interaction, Babbitt 

Cu-Ni deposit, Duluth Complex, Minnesota. Econ. Geol., 82, 87-107. 

Spera, F.J., Bohrson, W.A., 2001. Energy-constrained open-system magmatic processes I: General model and 

energy-constrained assimilation and fractional crystallization (EC-AFC) formulation. J. Petrol., 42, 999-

1018. 

Vuori, S.K., 2004. Petrogenesis of the Jurassic gabbroic intrusions of Vestfjella, Dronning Maud Land, Antarctica. 

Academic Dissertation, University of Helsinki, Gummerus, Saarijärvi, 25 pages. 

  



LITHOSPHERE 2016 Symposium, November 9-11, 2016, Espoo, Finland 35 

 

 

Integrated Interpretation of Geophysical Data for Deep 

Exploration in the Kylylahti Cu-Mining Area, Eastern Finland 
 

S. Heinonen1, H. Leväniemi1, P. Sorjonen-Ward2, A. Kontinen2 and S. Aatos2 

 

1Geological Survey of Finland, PL 96, 02151 Espoo, Finland  
2Geological Survey of Finland, PL 1237, 70211 Kuopio, Finland 

E-mail: suvi.heinonen@gtk.fi 

 

The Kylylahti Cu-Au-Zn mine is located in the historical Outokumpu ore district in eastern Finland. We used high 

resolution reflection seismic profiles imaging the subsurface structures down to depth of 5 km to study the deep 

exploration potential of the Kylylahti area. A regional interpretation of the seismic data suggest that the peridotite 

body of Kylylahti has substantial down-plunge extent towards the south. We have interpolated the densities 

measured in laboratory from drill-core samples to create a 3D-subsurface density distribution grid and compared 

it with the seismic reflection data and also with the near surface velocity model that was derived from the first 

arrival times of the seismic data. These data are used to discuss the deep exploration potential of the Kylylahti 

area. 
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1. Introduction 

In this study, we are investigating the potential for deeply buried extensions of the Outokumpu 

type Kylylahti copper deposit in eastern Finland (Peltonen et al., 2008), based on high 

resolution seismic reflection profiles, gravity data and density measurements from drill core 

samples. The study was conducted as a part of project “Developing Mine Camp Exploration 

Concepts and Technologies –Brownfield Exploration” (Aatos, 2016 and reference therein). 

Kylylahti is an ideal test case for geophysical deep exploration, as it has no surface exposure 

and because of its discovery as a result of structural geology and geophysical exploration 

targeting (Rekola and Hattula, 1995). Gravity data and seismic reflection profiles provide a 

regional outline of the Kylylahti formation while the combination of interpolated density 

distribution and seismic data are used to characterize the subsurface around the Kylylahti 

deposit. 

 

2. Geological background 

The Outokumpu Cu-Co-Zn-Ni ore district lies within an extensive tectonostratigraphically 

distinct package that can be traced for nearly 300 km through eastern Finland and covers an 

area of about 5400 km2 (Huhma and Huhma, 1970). The Outokumpu ores occur within a rock 

assemblage comprising serpentinites, gabbros, talc-carbonate schists, Cr-bearing calc-silicate 

rocks, dolomite and quartz rock; this so-called Outokumpu assemblage is typically 

distinguishable from the surrounding mica gneisses by geophysical methods because of its 

distinct and highly variable petrophysical properties. 

A network of seismic reflection profiles (Figure 1) was acquired in the Outokumpu area 

during the HIRE-project (High Resolution Reflection Seismics for Ore Exploration 2007-2010) 

by Spetsgeofysika for the Geological Survey of Finland. The applied data acquisition, 

processing and interpretation procedures are presented in Kukkonen et al. (2012). This study 

mainly utilizes the profile E1 crossing the Kylylahti mine area. These data were collected using 

explosive sources at 25 or 50 m intervals and receiver group spacing of 12.5 m. Other seismic 

profiles were collected with vibroseismic source and are used to illustrate the regional structural 

framework of the Kylylahti deposit.  
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Figure 4.HIRE-seismic reflection profiles on a geological map of Polvijärvi area.Map 

modified from Bedrock map: Digital Bedrock Map Database of Finland (Bedrock of Finland 

− DigiKP). 

 

In addition to the deep penetrating seismic data, this study utilizes the laboratory density 

measurements of 12859 drill core samples from the Kylylahti mining camp. The subsurface 

location of each sample is known and densities were interpolated inside of a 3D grid covering 

the study volume. The density measurements are also used to constrain the inversion of the 

gravity data measured in the area. 

 

3. Data interpretation 

Based on the seismic data and previous geological observations, Kylylahti can be modelled as 

a part of a wedge shaped body of originally dominantly mantle peridotites thrust and folded 

within a package of metasediments and bound by curved faults. The Kylylahti body is 

characterized with prominent but discontinuous reflectivity and it is internally faulted, as 

suggested for example by Saalman and Laine (2014). Seismic images suggest that the Kylylahti 

body has substantial down plunge extent towards the south and below the current mine. 

However, on the seismic profile E1 the inversion of the ground gravity data constrained with 

the densities measured from drill-core samples does not indicate existence of considerable 

masses below the depth extent of the current drilling. Inversion results become more ambiguous 

towards the south-west of the known deposit because of lack of drill hole constraints but results 

indicate existence of high density rock masses underneath the intersection between seismic 

profiles V8 and V1. This predicted extension of Kylylahti body should have continued sulphide 

potential due to the apparent continuation of favourable reflective rock types and deep 

penetrating faults that could have controlled mobilization of sulfides during the final stages of 

the ore formation process. 
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First breaks of the seismic reflection data were used to create a refraction seismic model 

of the subsurface velocity distribution along the profile E1 in the vicinity of the Kylylahti mine 

area. The model consisted of two layers, the first corresponding to the overburden and the 

second to the uppermost, weathered and fractured bedrock, beneath which the velocities 

represent fresh bedrock. Seismic velocities were allowed to vary laterally within the layers and 

were iterated simultaneously with layer thickness.  

We used the densities measured in laboratory from drill-core samples to create a 3D-

subsurface density distribution grid (cell size 50 x 50 x 10 m). Interpolation was done inside an 

ellipsoidal volume with dimensions 15 0x 150 x 50 m, dip direction of 90° and dip of 30°. These 

parameters were chosen based on the general direction of reflectivity. 

 

Figure 2. Comparison of the near surface velocity model, interpolated density distribution and 

seismic reflectivity along the seismic profile E1 in the vicinity of the Kylylahti mine. 

Comparison of the resolved layer shapes from the refraction seismic model with the reflection 

profile shows that similar trends are observable from the reflections and the base of the layer 

representing weathered and fractured bedrock (Figure 3). Moreover, the interpolated density 

distribution is also compatible with the shape of the base of the weathered rock layer. High 

density values correlate particularly well with high amplitude reflections at 100-500 m depth 

and density is uniformly low (< 2.85 g/cm3) in the areas where high amplitude reflections 

disappear,. These observations are consistent with the overall properties of the Outokumpu 
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assemblage hosting the ore in the region: the overall density is higher than that of the 

surrounding mica schists, and the assemblage is internally highly heterogeneous and thus 

strongly reflective (Kukkonen et al., 2012).  

 

4. Discussion and conclusions 

Based on the interpretation of seismic reflection data presented, the serpentinized peridotite-

dominated unit hosting the Kylylahti massive sulphide deposit appears to continue to several 

kilometres depth in the south of the current mine. Strong discontinuous reflections are present 

at the deeper levels (~500 m) of the eastern part of the Kylylahti body and thus it is likely that 

the prospective Kylylahti rock types extend in these areas underneath the mica gneiss cover. 

High density zones interpolated from the drill hole data coincide with strong reflectors, while 

areas of uniformly low density are characterized by lack of reflectivity. The integrated 

interpretation of different geophysical data presented here encourages the future deep 

exploration efforts in the area. 
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Abundant isotopic data have been obtained from the Inari-Utsjoki area since 1970's. Many old age results have 

been recently confirmed by spot analyses. These together with Sm-Nd and geochemical data suggest that new 

juvenile crust with arc affinities was formed in the Utsjoki area ca. 1.91-1.94 Ga ago. The results on the Archaean 

Lake Inari area show strong metamorphic effects at ca. 1.9 Ga. 
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1. Introduction 

The understanding of the geological evolution of the Lapland-Kola Province in Finland is 

largely based on the comprehensive isotopic studies (U-Pb, Pb-Pb and Rb-Sr) performed at the 

GTK in early seventies. Main results were reported by Meriläinen (1976), but no isotopic data 

were included in the paper. Recent studies using U-Pb spot analyses on zircon have largely 

confirmed the old findings but together with Sm-Nd results also introduced new views on the 

topic.  Relevant results from the Lapland granulite belt were published by Tuisku & Huhma 

(2006) and Tuisku et al. (2012), but data from other areas have remained unpublished. 

 

2. Old results  

The results obtained 40 years ago using U-Pb on zircon, titanite and monazite include: 

-  The Archaean Inari gneisses have zircon age estimates 2.5-2.7 Ga, whereas titanites in these 

samples are ca. 1.9 Ga. This is exceptional within the Archaean granitoids in Finland and 

suggests a strong 1.9 Ga thermal overprinting on the Archaean crust NE of the granulite belt. 

In contrast, titanite in an Archaean rock on the southern side of the granulite belt is Archaean. 

-  Quartz dioritic gneisses in Utsjoki, east of the granulite belt (Kuorboaivi belt) provide zircon 

age estimates of ca. 1.93 Ga (mostly one discordant analysis/ sample). No indications of 

Archaean ages are found within this area. 

-  In the Lapland granulite belt meta-igneous rocks of have zircon ages of 1.91-1.93 Ga, whereas 

meta-sedimentary rocks provided heterogeneous zircon populations with Pb/Pb ages of 2.0-

2.15 Ga; monazites are ca. 1.91 Ga.  

The Pb-Pb data on whole rocks and K-feldspar suggested that: 

-  The whole rock Pb-Pb age on the Archaean gneisses is ca. 2.6 Ga, whereas K-feldspars in 

these rocks register Palaeoproterozoic Pb isotopic compositions (Figure 1). The K-feldspar 

analyses provide a trend on Pb-Pb diagram with a slope of 0.301. If T2 is 1.9 Ga (age of 

resetting) the slope yields T1=2.6 Ga (primary age). Individual K-feldspar whole rock pairs 

give ages of ca. 1.9 Ga. These results suggest a strong 1.9 Ga thermal influence on the Archaean 

crust. 

-  The whole rock K-feldspar age estimate for the "1.93 Ga" (Kuorboaivi) rocks is 1.96 ± 0.14 

Ga. The initial Pb isotopic composition suggests a juvenile Proterozoic source.  
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Figure 1. Pb-Pb isotope results from the Archaean gneisses in the Lake Inari area. 

 

3. Updated results 

The old TIMS ages of 1.91-1.93 Ga from the meta-igneous rocks of the Lapland granulite belt 

have been confirmed by SIMS analyses. The results from migmatitic granulites showed that 

detrital zircons were mostly derived from 1.94-2.1 Ga sources (Tuisku and Huhma 2006; Tuisku 

et al. 2012). Few Archaean grains were also obtained and as a whole the detrital population 

shares similarities with the Svecofennian and Upper Kalevian metasediments (e.g. Huhma et 

al. 1991, Lahtinen et al. 2009, 2010). Constraints for the metamorphic evolution are provided 

by ca. 1.91 Ga monazite, ca. 1.90-1.88 Ga zircon and 1.89-1.88 Ga Sm-Nd garnet-whole rock 

ages. 

Recent U-Pb spot analyses on zircon using LA-ICPMS have confirmed ages of 1.94-1.91 

Ga for several granitoids in Utsjoki, east of granulite belt ("Kuorboaivi belt", Figure 2), as well 

as Archaean ages for some gneisses in the lake Inari area. Few samples between these two 

domains seem to contain zircons with ages of ca. 2.5 Ga. Interestingly, such ages using LA-

ICPMS have also been obtained from the S-SW side of the granulite belt. 

The Sm-Nd analyses on ca. 70 whole rock samples from the Lapland-Kola Province 

provide information of crustal sources.  Together with geochemical data they show that the 

1.91-1.94 Ga magmatism east of the granulite belt in Utsjoki is largely juvenile with arc 

affinities (Figures 3, 4), thus confirming the early speculations (Huhma 1996, Svekalapko 

workshop, Lammi, Finland; Barling, Marker and Brewer, 1996, Proterozoic Evolution in the 

North Atlantic Realm, Goose Bay conference; Daly et al. 2006). 
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Figure 2. Concordia diagram showing U-Pb analyses on zircon by TIMS (dots) and LA-

MCICPMS (error ellipses). 

 

 

 
 

Figure 3. Epsilon-Nd (1900) for whole rock samples from the Utsjoki-Inari area. 

1650

1750

1850

1950

2050

0.24

0.28

0.32

0.36

0.40

3.8 4.2 4.6 5.0 5.4 5.8 6.2 6.6

2
0
6
P

b
/2

3
8
U

207Pb/235U

A458 Mieraslompolo quartz diorite

Concordia Age = 1929  6 Ma
(n=15 all)

data-point error ellipses are 2s

TIMS Intercepts at 

324  56 & 1930  8 Ma

MSWD = 5.7 (n=7)

-14

-10

-6

-2

2

6
data-point error symbols are 2s

Ep
si

lo
n

-N
d

(1
9

0
0

)

Lapland 
granulites

Inari complex, East of granulite

paragneisses ortogneisses

Depleted mantle ->

Archaean gneisses

Juvenile c. 1.93 Ga crust



LITHOSPHERE 2016 Symposium, November 9-11, 2016, Espoo, Finland 42 

 

 

 
 

Figure 4. Geological map showing epsilon-Nd (1900) in five categories: largest symbols €-

Nd>+0.6, smallest symbol (dot) €-Nd<-7.9. 
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The Kevitsa Ni-Cu-PGE disseminated sulphide deposit is hosted by the Kevitsa mafic to ultramafic intrusion, 

located within the Central Lapland Greenstone Belt in northern Finland. A 3D seismic reflection survey was 

conducted in Kevitsa in 2010 for mine planning and deep mineral exploration purposes. Within the Kevitsa 

resource area, the 3D seismic data are characterized by laterally continuous reflections. Here we use data mining, 

namely Self-Organizing Map (SOM), analysis to better understand the possible causes of reflectivity within the 

Kevitsa intrusion. The results show that the mineralized zones within the intrusion could be potential causes of 

reflectivity, and hence could set potential exploration targets in the area.   

 

Keywords: data mining, reflection seismic data, exploration, self-organizing maps (SOM) 

 

1. Introduction  

Data mining approaches, such as Self-Organizing Maps (SOM), can be used for objective 

analysis of the complex and sparse geophysical and geological data sets typical for mining 

camps, to better understand the underlying linear and non-linear relationships between the 

different data. The SOM analysis (Kohonen, 2001) is based on vector quantization and 

measures of vector similarity. It is unsupervised, so no prior knowledge is required on the nature 

or number of clusters within the data. The underlying statistical relationships between different 

data are visualized with 2D maps that make the interpretation of the multidimensional, complex 

data possible. The main objective of this study was to use the SOM analysis to better understand 

the potential causes of observed internal reflectivity in the 3D seismic reflection data within the 

Kevitsa intrusion, and its relationship to the disseminated Ni-Cu-PGE-bearing sulphide 

mineralization.  

 

2. Background and motivation of the study 

The Kevitsa Ni-Cu-PGE deposit is hosted by the Kevitsa mafic-ultramafic intrusion located 

within the Central Lapland Greenstone Belt in northern Finland (Figure 1). The Kevitsa open-

pit mine started in 2012 and is currently operated by Boliden. The mine was operated by First 

Quantum Minerals Ltd. until June 2016. It has been suggested (e.g. Standing et al., 2009) that 

the extent of economic mineralization is controlled by the extent of smaller-scale, laterally 

discontinuous and internally differentiated magma pulses that represent a spectrum of olivine 

pyroxenites consisting of plagioclase and orthopyroxenite rich tops that gradationally change 

into more olivine and clinopyroxenite rich bottoms. The mineralogical change within an 

individual pulse is gradational, meaning that no internal boundaries exist within a pulse, but the 

base of one pulse will grade relatively sharply into the top of another pulse. The mineralization 

is more strongly associated with the bases of these individual magma pulses.  
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Figure 1. Geological map of the Kevitsa area. Location of the open-pit in dashed white line. 

 

A 3D seismic reflection survey was conducted in Kevitsa in 2010 for mine planning and deep 

mineral exploration purposes (Malehmir et al., 2012; 2014). The 3D seismic survey area, 

corresponding to about 9 km2, is located over the Kevitsa resource area (Figure 1). In earlier 

studies (Malehmir et al., 2012; 2014; Koivisto et al., 2015), laterally continuous reflections 

were observed in the 3D seismic data within a constrained area inside the Kevitsa intrusion 

(Figure 2). It was suggested that this internal reflectivity originates from the contacts between 

the tops and bottoms of the individual magma pulses controlling the extent of the main 

economic mineralization. On average, the physical properties of the olivine pyroxenite variants 

constituting the tops and bottoms of these magma pulses differ enough to produce detectable 

reflections (e.g., Koivisto et al., 2015). However, the interpretation is not fully supported by the 

borehole data and therefore, requires further research.  

 

 
 

Figure 2. Observed internal reflectivity in the 3D seismic reflection data (Malehmir et al., 2012) 

within the Kevitsa intrusion. See location of inline 1187 and crossline 1088 from Figure 1. 

Sections viewed from northwest. 
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3. Method 

In this study, data mining, namely the SOM analysis with SiroSOM (Kohonen, 2001; SiroSOM: 

Fraser and Dickson, 2007), is used to better understand the origin of internal reflectivity 

observed in the 3D seismic reflection data within the Kevitsa intrusion and its relationship to 

the Kevitsa Ni-Cu-PGE deposit. At this stage, only borehole data was used to conduct the 

analyses. In the SOM, the clustering of the complex multidimensional (nD) input data is 

represented by node vectors that are trained in an unsupervised learning process, based on 

vector quantization and the measures of vector similarity. Regression is used to map these node 

vectors from nD to 2D maps. This process preserves the topology of the node vectors. The 

underlying statistical relationships between different data are visualized with the help of these 

2D maps that make the interpretation of the complex multidimensional data possible. 

 

4. Results 

The results show that the contacts between the tops and bottoms of the suggested magma pulses 

do not alone fully explain the observed internal reflectivity within the Kevitsa 3D seismic 

reflection data (Figures 2 and 3). This is partly because in the Kevitsa borehole data there are 

not enough samples of the plagioclase and orthopyroxenite rich olivine pyroxenite variant to 

comprehensively determine the physical properties of the tops of the suggested magma pulses, 

and map the overall extent. This could partially be attributed to the possible dunitic magma 

contamination that has resulted in more olivine and clinopyroxenite rich magmas, thus 

overprinting the extent of the plagioclase and orthopyroxenite rich variants. Most interesting 

finding in the SOM results is the division of olivine pyroxenite into a lower and higher seismic 

velocity group (Figure 3), which seem to differ enough to produce detectable reflections 

(Figures 4). It seems that the mineralization associated with the olivine pyroxenite lowers the 

seismic velocity, while densities remain about the same, resulting in necessary acoustic 

impedance difference. The main ore-bearing sulphide minerals in Kevitsa are pyrrhotite, 

pentlandite and chalcopyrite that tend to lower the seismic velocities of the hosting silicate 

rocks. 

 

 
 

Figure 3. Component plots showing possible causes of reflectivity within the Kevitsa intrusion. 

The most interesting finding is the lower seismic velocity area that exists within the olivine 

pyroxenite unit associated with the mineralization (highest Cu and Ni) that makes the olivine 

pyroxenite itself internally reflective. 
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Figure 4. P-wave velocity versus specific gravity (SG) plot for different clusters showing that 

on average (larger black circled dots) the barren olivine pyroxenite group (maroon) has higher 

seismic velocity than the olivine pyroxenite group with mineralization (purple). Density does 

not seem to differ much at all (similar range of densities defines all the groups) resulting in 

acoustic impedance difference that is enough to produce a detectable reflection. 

 

5. Conclusions 

The contacts between the tops and bottoms of the suggested magma pulses do not alone fully 

explain the observed internal reflectivity in the 3D seismic data within the Kevitsa intrusion. 

The mineralized zones within the intrusion could be potential causes of the observed internal 

reflectivity, and hence could set potential exploration targets in the area. 
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The geochemical composition of seven post-kinematic mafic dykes in southern part of Central Svecofennia have 

been studied. Two dykes have been selected for in situ zircon U-Pb geochronology and one for in situ zircon Lu-

Hf isotope analysis. These c. 1.86 Ga dykes can be divided into two subgroups by their geochemical characteristics: 

i) an enriched type with Nb contents up to 42 ppm, high contents of certain fluid mobile elements such as F, Ba, 

Sr, K2O and LREE and elevated contents of Fe2O3, Ti2O and P2O5, and ii) a primitive type with high MgO and Cr 

content. The primitive dyke exhibit positive, average c. +3, initial εHf values. The geochemical data combined 

with the petrological and the field observations suggest that the dykes are juvenile and derived from a subduction-

enriched mantle source in a within-plate environment during the post-kinematic stage of the Svecofennian orogeny. 

 

Keywords: Svecofennian orogeny, Lu-Hf, U-Pb, geochemistry, mafic dykes 

 

1. Introduction 

The Svecofennian orogen in southern Finland is proposed to consist of two terranes: Central 

Svecofennia (CS) in the north and Southern Svecofennia (SS) in the south (Korsman et al. 1997; 

Figure 1a). Central Svecofennia is characterized by the large Central Finland Granitoid 

Complex (CFGC) in the north, followed by the volcanic arc-type Tampere schist belt (TSB) on 

its southern fringe (Kähkönen 2005). South of the TSB is the Pirkanmaa migmatite belt (PB), 

metamorphosed at c. 1.88 Ga (Mouri et al. 1999). Southern Svecofennia consists of two separate 

volcanic arc-type belts, the Häme (HB) and Uusimaa (UB) belts (Kähkönen 2005; Figure 1b). 

Southern Svecofennia is characterised by the late-Svecofennian high heat flow and production 

of granites and migmatites, which formed the Late Svecofennian Granite Migmatite zone 

(LSGM) at c. 1.84-1.81 Ga (Ehlers et al. 1993, Väisänen et al. 2002, Mouri et al. 2005). 

The age difference in metamorphic processes between Central Svecofennia and 

Southern Svecofennia is evident indicating different tectonic processes within a short distance. 

In this study, we present petrological, geochemical, zircon U-Pb and Lu-Hf isotope data from 

mafic dykes cross-cutting the Pirkanmaa migmatites, a few kilometres north of the proposed 

terrane boundary, in order to evaluate their petrogenesis and tectonic significance. We also 

compare these dykes with a dyke of the same age in Southern Svecofennia. 

 

2. Geological setting 

The study area straddles the proposed terrane boundary between Central Svecofennia and 

Southern Svecofennia (Figure 1b). The northern part of the study area, belonging to Central 

Svecofennia, consists of the PB high-grade sedimentary rocks (Mouri et al. 1999, Kähkönen 

2005; Figure 1b). The PB is characterised by migmatized psammitic supracrustal rocks and 

gneisses of a turbiditic origin (Kähkönen 2005) but it also includes some mafic to ultramafic 

volcanic rocks with MORB to WPL affinities (Peltonen 1995) and various synorogenic 

granitoids (Mouri et al. 1999). It has been interpreted to represent the forearc sediments of a 

volcanic arc complex (Lahtinen 1996, Kähkönen 2005). 

The southern part of the study area consists of the c. 1.88 Ga HB comprising mafic, 

intermediate and felsic volcanic and plutonic rocks (Vaasjoki 1994, Nironen 1999, Kähkönen 

2005, Saalmann et al. 2009). The volcanics are well-preserved and have been metamorphosed 
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at amphibolite facies. The HB is considered to have formed in a subduction-related volcanic 

arc setting and the volcanic rocks show mature volcanic arc affinities (Hakkarainen 1994, 

Lahtinen 1996, Kähkönen 2005). 

In between the terranes is a proposed terrane boundary that is not straightforwardly 

observable in the field (Korsman et al. 1997, Sipilä et al. 2011). Within the study area the 

boundary is demarcated by various syn to post-kinematic granitoids and an E-W trending shear 

zone.  

 

 

Figure 5. a) Geological overview of the Fennoscandian shield, modified after Koistinen et al. 

(2001). b) Lithological map of southern Finland, modified after Kallioperä - Bedrock of Finland 

1:200 000. The study area is indicated by a black rectangle. See text for abbreviations.  

 

3. Petrology and geochemistry of the mafic dykes 

The dykes occur as elongated intrusions a few to tens of metres wide and tens to hundreds of 

metres long which cut the migmatisized metasedimentary country rocks in the NWW-SEE 

direction with an apparent gentle NNE dip. The country rock is partially melted on the upper 

contact of the mafic dyke and the veins of tonalitic leucosome cut the dykes in places. Otherwise 

the dykes are undeformed and exhibit an ophitic to subophitic texture of plagioclase laths and 

intergranular hornblende and primary and secondary biotite (Figure 2b and c). Prismatic apatite 

is the most common accessory phase (Figure 2d) with minor pyroxene. The grain size ranges 

from a rapidly cooled fine-grained contact zones (Figure 2b) to slowly cooled medium-grained 

interiors (Figure 2c). 

Geochemically the dykes can be divided into two subgroups, although they share some 

common features. The first group is characterized by Nb, F, Ba, Sr and LREE enrichment, and 

show elevated Fe2O3, K2O, P2O5 and Ti2O contents. In the TAS diagram this group is classified 

as monzogabbro and the K2O content shows a shoshonitic composition. The second group, a 

gabbro in the TAS diagram, is calc-alkaline and exhibits a more primitive nature by higher MgO 

and Cr contents but also shows slightly elevated Ti2O, and F values. Both groups show distinct 

subduction zone characteristics with LILE enrichment and Nb and Ta depletion in the NMORB 

normalized multielement diagram. However, the overall trace element concentrations are higher 

in the enriched type, especially the Nb and Ta contents. 
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Figure 6. a) A photograph from a cut surface of a medium-grained dyke. Photomicrographs of 

a thin section from a fine-grained variety (b), medium-grained dyke (c) and apatite inclusions 

in plagioclase (d).  

 

4. Isotope characteristics 

The zircon U-Pb ages of two of the dykes, one of each type, were determined by the laser 

ablation inductively coupled mass spectrometry (LA-ICP-MS) in the Finnish Geoscience 

Research Laboratory at GTK, Espoo, Finland. A concordia age of c. 1.86 Ga was obtained for 

both of the dykes. The Lu-Hf isotope composition was determined for one of the primitive 

dykes on the previously dated zircons using the same LA-ICP-MS facility. 36 analyses on 29 

zircons show an average initial εHf(1.86 Ga) of c. +3. 

 

5. Discussion and conclusion 
Nevalainen et al. (2014) have described c. 1.86 Ga intra-orogenic enriched monzogabbros from 

Southern Svecofennia which are deformed in the late Svecofennian stage at c. 1.83 Ga. The 

mafic dykes of the same age in this study show many similar geochemical features, e.g. LILE, 

LREE, F, K2O and P2O5 enrichment, but lack signs of structural deformation.  

Both dyke types in this study show WPL affinities (e.g., Pearce 1982; Schandl and 

Gorton 2002). However, the magmas have been enriched by a subduction-related 

metasomatism. According to the Hf isotopes the primitive type is juvenile, although it displays 

a large variation in initial εHf values. Although the initial eHf values are scattered, its average 

value indicates a dominantly mantle derived primitive source for these dykes. Whether the dyke 

types are derived from the same magma source is still unknown. 

a) b) 

c) d) 
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The field observations, the emplacement age and the geochemical signature support the 

post-kinematic nature of the dykes. This suggests that cratonization had already started in 

Central Svecofennia at 1.86 Ga and that the tectonic regime had changed from an active 

continental margin to a within-plate environment.  
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Aspect is a miniaturized satellite designed to investigate Didymos binary asteroid as a part of AIDA mission. Its 

scientific objectives include spectral and compositional characterization of Didymos system and investigation of 

space weathering and shock effects. 
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1. AIDA mission 

The joint ESA/NASA AIDA (Asteroid Impact & Deflection Assessment) mission to binary 

asteroid Didymos consists of AIM (Asteroid Impact Mission, ESA) and DART (Double 

Asteroid Redirection Test, NASA) spacecrafts. DART is targeted to impact Didymos secondary 

component (Didymoon) and serve as a kinetic impactor to demonstrate deflection of potentially 

hazardous asteroids (Figure 1). AIM will serve as an observational spacecraft to evaluate the 

effects of the impact and resulting changes in the Didymos dynamic parameters. 

 

2. ASPECT CubeSat 

The AIM mission will also carry two CubeSat miniaturized satellites, released in Didymoon 

proximity. This arrangement opens up a possibility for secondary scientific experiments. 

ASPECT (Asteroid Spectral Imaging Mission) is one of the CubeSat proposals (Figure 1). 

 

 
Figure 1. AIDA mission scenario (left) and illustration of ASPECT satellite (right). 

 

3. ASPECT configuration and payload 

ASPECT is 3U (3 unit) CubeSat with avionics, propulsion, and scientific payload occupying 

one unit each. ASPECT design builds on Aalto-1 and Aalto-2 CubeSat heritage. Scientific 

payload consists of visual – near infrared (VIS-NIR) spectrometer build at VTT. The 

spectrometer parameters are as follows: 
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 3 measurement channels 

o VIS (500–900 nm) spectral imager (614 x 614 pixels) 

o NIR (900–1600 nm) spectral imager (256 x 256 pixels) 

o SWIR (1600–2500 nm) spectrometer (1 pixel) 

 45 nm spectral resolution 

 Better than 2 m spatial resolution (pixel size) from 4 km orbit 

 

4. ASPECT science objectives 

 ASPECT scientific objectives and results 

AS1 Map the surface composition of the Didymos system 

Result 
Composition and homogeneity of the Didymos asteroid, changes as a result 

of DART impact 

Result Information on the origin and evolution of the Didymos binary system 

AS2 
Photometric observations and modeling of the Didymos system under varying 

phase angle and distance 

Result 
Surface particle size distribution and composition for Didymoon and 

Didymain (simultaneous modeling of photometry and spectroscopy) 

AS3 
Evaluate space weathering effects on Didymoon by comparing mature and freshly 

exposed material 

Result Information on the surface processes on airless bodies due to their exposure 

to the interplanetary environment 

AS4 
Identify local shock effects on Didymoon based on spectral properties of crater 

interior 

Result Information on the processes related to impacts on small Solar System bodies 

AS5 Observations of the plume produced by the DART impact 

Result Evolution and composition of the DART impact plume 

AS6 Map global fallback ejecta on Didymoon and Didymain 

Result Detailed global mapping of fallback ejecta on both Didymain and Didymoon 

 

5. Conclusions 

ASPECT is a CubeSat mission with a VIS-NIR imaging spectrometer. Main science objectives 

are to characterize Didymos surface and its changes after DART impact and to significantly 

improve understanding of space weathering and shock processes. ASPECT will be first 

CubeSat operation autonomously in a vicinity of an asteroid. 
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The collaborative COGITO-MIN project between six partners from Finland and Poland aims to develop cost-

effective, novel, geophysical deep mineral exploration techniques, with particular emphasis on seismic imaging. 

The three-year-long project was launched in January 2016, with the data acquisition stage ending in late September 

2016. The purpose of this presentation is to provide insights to the data acquisition stage, and to the future 

directions of the COGITO-MIN project. 
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1. COGITO-MIN project 2016-2018 

University of Helsinki, Geological Survey of Finland (GTK), Institute of Geophysics, Polish 

Academy of Sciences (IG PAS), Boliden Kylylahti, Vibrometric and Geopartner, research 

institutions and industry partners from Finland and Poland, are collaborating on the project 

COGITO-MIN (COst-effective Geophysical Imaging Techniques for supporting Ongoing 

MINeral exploration in Europe). COGITO-MIN aims to develop cost-effective, novel, 

geophysical deep mineral exploration techniques, with particular emphasis on seismic imaging. 

Seismic imaging is attractive for deep mineral exploration (e.g., Malehmir et al., 2012; 2014) 

because of superior depth penetration and resolution when compared to other geophysical 

imaging techniques. The project equally addresses data acquisition, processing and 

interpretation aspects of seismic reflection methods, with the overall goal to develop integrated 

geophysical-geological approaches for mine planning and exploration targeting. COGITO-MIN 

has been funded through ERA-MIN, which is a network of European organisations owning 

and/or managing research programs on raw materials. The funding for the Finnish COGITO-

MIN project partners comes from Tekes and for the Polish project partners from the NCBR (the 

National Centre for Research and Development). The overall budget of the three-year-long 

project, launched in January 2016, is about 2 million euros.  

 

2. New tools for deep mineral exploration: insights from the GOCITO-MIN field work 

The data acquisition stage of the COGITO-MIN project took place from early August to late 

September 2016 in the vicinity of the Kylylahti Cu-Zn-Au mine in Polvijärvi, eastern Finland. 

The Kylylahti mine is operated by Boliden and is located within the famous Outokumpu 

brownfield area. The long history of geological and geophysical studies in the Outokumpu area, 

also including earlier seismic reflection profiles (e.g., Heinonen et al., 2011; Kukkonen et al., 

2012), makes the site ideal for testing new concepts.  

On the surface, the executed experiments include, 1) a novel 3D passive seismic 

interferometry experiment (e.g., Cheraghi et al., 2015) in which 1000 seismic receivers in a 3.5 

x 3 km grid were left to record ambient noise sources for 4.5 weeks, with the aim to develop a 
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cost-effective method for mapping the continuity of ore-bearing rock units in the initial stages 

of exploration targeting, 2) two approximately 6-km long high-resolution seismic reflection 2D 

profiles tailored to accommodate full-waveform inversion for improved seismic velocity model 

building and exploration targeting, and 3) a seismic reflection 3D survey utilizing the passive 

seismic grid and a “random” distribution of active seismic sources instead of more expensive, 

regular source line geometry typical for seismic reflection 3D surveys.  

Inside the Kylylahti mine, the experiments include, 1) a multi-azimuth three-component 

VSP (Vertical Seismic Profiling) survey in three, approximately 500 m long, boreholes, with 

sources in the mine tunnels and on the surface, and 2) a VSP survey, as well as passive ambient 

noise measurements, in one borehole utilizing a new distributed acoustic sensing (DAS) 

technology (e.g., Parker et al., 2014) with the ability to take measurements at any point along 

the fibre optic cable used as a seismic sensor in the borehole (Figure 1A). The aim of these 

experiments is to develop methods for high-resolution resource evaluation and near-mine 

exploration. 

 

 
Figure 1. A) Fibre optic cable installed to act as a seismic sensor in a borehole in the Kylylahti 

mine. B) New postdoctoral researcher of the COGITO-MIN project at the University of 

Helsinki, Marko Riedel, participating in the VSP data acquisition work. Marko`s postdoctoral 

research work will focus on the development of processing and interpretation methods for the 

acquired VSP data sets, in collaboration with Vibrometric. 

 

All the project partners participated in all the components of the field work, with different 

partners in charge of different components. Boliden Kylylahti was in charge of laborious 

permitting and site-related matters. The GTK was in charge of the passive seismic 

interferometry experiment. Massive surveying work was done by the GTK from June to 

September 2016, and they also handled all the explosive surface sources of the overall 

experiment. Geopartner, a geophysical company from Poland, provided equipment and 

executed 2D data acquisition, with the IG PAS in charge of the active-source imaging 

component of the surface work. Vibrometric, a Finnish company specializing in borehole 

seismic measurements, was in charge of the VSP work inside the Kylylahti mine (Figure 1). 

Additionally, NovaSeis, a geophysical company from Poland that provided the 1000 wireless 

recorders for passive seismic interferometry experiment, and Silixa, a company from the UK 

specializing in the DAS measurements (Figure 1A), acted as contractors. The University of 

Helsinki acts as the overall coordinator of the COGITO-MIN project.  
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 After the extensive data acquisition stage, the next stage of the project will start, i.e., 

development of the data processing and interpretation methods; including, for example, 

development of techniques for processing the passive seismic data and for combining the active 

source surface and borehole data in a fashion that provides a larger range of illumination angles 

of the targets. Multiple researchers are participating from each partnering organization, and the 

project is expected to produce several Doctoral and Master`s theses. For example, in 

collaboration between the GTK and the University of Helsinki, petrophysical characterization 

of the Kylylahti deposit is currently underway as a Master`s thesis work (see Luhta et al., this 

volume) and a doctoral student has already started his work at the IG PAS on the passive seismic 

3D data. 

 

3. Conclusions 

The collaborative COGITO-MIN project between six research institutions and industry partners 

from Finland and Poland aims to develop cost-effective, novel, geophysical deep mineral 

exploration techniques, with particular emphasis on seismic imaging. The three-year-long 

project was launched in January 2016, and the data acquisition stage of the COGITO-MIN 

project was successfully finished at the end of September 2016. The purpose of this presentation 

is to provide insights to the data acquisition stage, and to the future directions of the COGITO-

MIN project. 
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1. Introduction 
The Seismic forward modelling can be used to understand better the seismic signatures of ore 

deposits and ore-bearing formations (e.g., Bohlen et al. 2003; Ahmadi et al. 2013). First, seismic 

forward modelling can be used to predict the seismic signature that would be recorded given an 

assumed ore body and host formation within the crust. Then, the model is compared to real 

reflection seismic data. For forward seismic modelling, a preliminary 3D geological model, or 

alternative models, of the subsurface is needed, along with density and seismic velocity 

structure of the medium where the seismic waves are travelling. Based on the forward 

modelling results, the 3D geological model can be verified or further improved, and with the 

acquired understanding of the seismic response at the deposit scale, real data can be analyzed 

for potential direct indications of new ore deposits. In addition, forward modelling can also be 

used for testing of optimal acquisition geometries and processing schemes for ore exploration. 

Before obtaining the seismic images of the subsurface, the reflection seismic data need to 

go through extensive data processing. During data processing, development of target-specific 

processing schemes has been in a key position to adapt the seismic reflection methods for hard 

rock ore exploration (e.g., Eaton et al. 2003; Malehmir et al. 2012). Specific processing 

problems arise for example from the typically used crooked-line survey geometries, and highly 

variable near-surface layer thickness and seismic wave velocity that cause time shifts to the 

reflected signals (e.g., Schmelzbach et al. 2007). However, previous studies (e.g., Milkereit et 

al. 2000; Salisbury et al. 2003; Adam et al. 2003) have shown that the scattering response of 

massive sulphide deposits can be preserved with careful acquisition and target-specific 

processing of the data, provided that the response is not obscured by scattering response of the 

heterogeneous background typical to hard rock environments (e.g., L`Heureux et al. 2009). 

 

2. Seismic forward modelling 
Crystalline bedrock is a challenging environment for seismic forward modelling at a mining 

camp scale. That is because the structures usually have very complex geometry and 

heterogeneous petrophysical properties due to their complicated geological history, and the 

dimensions of the ore bodies are typically comparable to seismic wavelengths. This means that 

approximative methods cannot be used accurately because they do not handle diffractions and 

scattering of seismic waves from heterogeneous formations and small objects. For example, 

results by Bohlen et al. (2003) show that massive sulphide ore bodies produce strong and 

complex scattering response that depends on the composition, size and shape of the scatterer. 
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The response is characterized by strong dependence on azimuth and offset, as well as phase 

reversals. 

Approximative modelling methods include for example seismic ray tracing and Born 

approximation. Ray tracing is valid only when the model structure is varying smoothly 

compared to the seismic wavelengths (Červeny 2005). Born approximation gives the theoretical 

elastic-wave scattering response of a 3D geological model in a weakly inhomogeneous medium 

(Eaton 1997). While these methods are computationally fast and can be used for quick 

modelling at a regional scale, especially at a deposit scale fully elastic algorithm is required for 

accurate forward modelling. Full waveform modelling of complicated structures is possible 

only by finite element or finite difference methods, out of which the finite-difference (FD) 

technique provides good balance between accuracy and computational efficiency (e.g., Moczo 

et al. 2014). 

Sofi2D/3D used in this study is massively parallel finite difference code which 

implements 2D/3D full waveform viscoelastic wave equations (Bohlen 2002). It uses higher-

order FD operators, staggered-grid formulation and numerically optimized Holberg coefficients 

for enhanced accuracy and computational efficiency. Parallelization is based on domain 

decomposition. Global model grid is decomposed into sub-grids which each are computed by 

a different processor. By using the portable message passing interface standard (MPI) for the 

communication between processors, running times can be reduced and grid sizes increased 

significantly (Bohlen 2002). Furthermore, the code shows good performance on massively 

parallel supercomputers, which makes the computation of large grids feasible. 

 

3. Seismic signature of the Outokumpu assemblage along OKU1 
Kukkonen et al. (2012) have suggested that most of the reflectivity within the uppermost 2 km 

of high-resolution seismic reflection sections OKU1, OKU2 and OKU3 could be due to bodies 

of the potentially ore-bearing Outokumpu assemblage rocks, i.e., serpentinites, and carbonate, 

skarn and quartz rocks enveloped by black schists and enclosed within quite homogeneous mica 

schists. This conclusion is based on the known surface geological features and drill-hole data, 

in particular the 2.5-km-deep Outokumpu Deep Drill Hole. 

 The near surface structures of our 3D geological model, used for seismic forward 

modelling, are based on the geological cross-sections by Koistinen (1981). The model has been 

continued to greater depths by creating a model of the deeper units from the seismic reflection 

data, based on the rock units observed in the Outokumpu Deep Drill Hole. 

 Seismic forward modelling was carried out with the real survey geometry of OKU1. 

The modelled shot gathers were processed with the same processing sequence as used for 

obtaining the stacked section of the real OKU1, as applicable (adding the CMP geometry, 

muting of air waves and first arrivals, NMO corrections and stacking). The main features of 

real OKU1 profile are visible in the synthetic data, confirming that the Outokumpu assemblage 

rocks can be identified from the seismic sections as internally strongly reflective packages. 

However, the real observed reflectivity patterns have not been completely reproduced in the 

synthetic section. This naturally means that the our geological model used for seismic forward 

modelling is not 100% correct. 

  

4. Seismic signature of the Outokumpu-type sulphide deposits 
To examine the seismic response of the Outokumpu-type, typically semi-massive to massive 

sulphide ore bodies within the Outokumpu assemblage, we added hypothetical ore bodies to 

our geological model. The Outokumpu-type sulphide deposits typically form thin, narrow and 

sharply bounded sheets or lenses of semi-massive to massive sulphides, located along or close 

to the interfaces between black schists and quartz–carbonate rocks. 
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  Our hypothetical ore bodies are 12–16-m-thick and 75–120-m-wide lenses, with a 

length spanning the whole length of the 3D geological model (about 1 km) perpendicular to the 

cross-section. 

  From the residual response of the ore bodies only (derived by subtracting the stack 

obtained without the hypothetical ore bodies from the stack obtained with the ore bodies added), 

diffractions are produced from all the hypothetical ore bodies. The strongest response is from 

the ore body placed in contact between serpentinite and quartz rocks, as expected based on the 

acoustic impedance contrasts. Comparison of the stacks indicates that the diffractions produced 

by the ore bodies are not easily recognaised from the other reflective contacts within the 

Outokumpu assemblage. 

 

5. Crooked-line processing  
To test the effect of the crooked-line survey geometry and processing on the visibility of the ore 

bodies, seismic forward modelling was done for shot gathers with the real crooked-line survey 

geometry of OKU1, as well as for shot gathers along a straight survey line approximating the 

survey geometry of OKU1. The modelled shot gathers were processed with the same processing 

sequence as used to obtain the stacked section of the real OKU1, as applicable for the synthetic 

data. Diffractions from the hypothetical ore bodies are visible in both stacked sections, for 

straight survey geometry and for crooked-line survey geometry. This indicates that the seismic 

signature of the ore bodies is preserved in the crooked-line processing. 

 However, it should be noted that the diffractions for the crooked-line survey geometry 

are smeared and less clear when compared to the diffractions for the straight survey geometry, 

and that especially the shallow parts of the geological model (Outokumpu assemblage rocks 

near the surface based on the cross-sections by Koistinen (1981)) produce a more detailed 

response with the straight survey geometry. Furthermore, the crooked-line survey geometry 

and/or processing produces features that are not present in the stacks obtained for the straight 

survey geometry. 

 

7. Conclusions 
The Outokumpu assemblage rocks, and black schist enveloping them, form internally strongly 

reflective packages within the mica schist, typically characterized by numerous diffraction 

hyperbolas in the stacked sections. The reflectivity characteristics can be used to identify the 

Outokumpu assemblage rocks at depth. 

 Based on the results of this study, it seems possible that the Outokumpu-type sulphide 

mineralizations could even be directly observed as high-amplitude anomalies in the seismic 

reflection sections, if the dimensions and orientation are optimal. A careful crooked-line data 

processing sequence enables the preservation of direct signals, if they are present in the data, 

except for very shallow signals that are more likely to be distorted by the crooked-line effects. 

The crooked-line effects can also potentially produce high-amplitude anomalies, and care is 

required when interpreting the high-amplitude anomalies. 
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1. General 

Fennoscandian Shield (Fig. 1) is situated in a continental intraplate setting in northern Europe. 

The latest plate tectonic event, which affected the study area, is the opening and spreading of 

the Atlantic Ocean that initiated 60 Ma ago. This ongoing event has subjected the area to a long-

standing tectonic stress-field oriented in a WNW–ESE direction. During the Pleistocene 

glaciations, the area has been subjected to repeated glacial cycles and associated loading and 

unloading events. The area is still rebounding. 

Current seismicity in the Fennoscandian Shield is generally low and it has been attributed 

to a complex interplay of intraplate and plate margin processes; the opening of the northern 

Atlantic Ocean, glacial isostatic adjustment (GIA) and local stress caused by mass deficit or 

excess in the area. An up-to-date estimate of the intraplate seismicity in the Central part of the 

Fennoscandian Shield and its sources is needed in seismic hazard estimates of nuclear power 

plant sites.  Fennovoima Oy nuclear power company commissioned a seismotectonic study 

from the Universities of Helsinki and Oulu and from the Geological Surveys of Finland and 

Sweden. Original data, interpretations and references can be found in Korja and Kosonen, 2014. 

 

2. Seismicity 

The seismicity in the Fennoscandian intraplate area is clustered along NE–SW-trending zones 

that are parallel to the Norwegian margin and the Mid-Atlantic ridge. A slight change in the 

general pattern takes place across an N–S-trending zone running east of the Finnish-Swedish 

national border (Pajala shear zone). East of this zone, the seismicity rates are lower and the NE–

SW trend is less obvious. The NE-SW trending earthquake clusters in northern Sweden and 

Finland are associated with PGF zones and western flank of the Gulf of Bothnia. The most 

active NE–SW-trending zone in Finland is the Kuusamo-Kandalaksa zone. 

Based on a subset of the most recent earthquake data (2000-2012) most of the earthquakes  

(80%) occur in the upper crust down to 17 km in depth, a minority (19%) in the middle crust 

(17-31 km) and only a few in the lower crust 31-45 km (1%) The seismogenic layer is less than 

30 km in depth.  

 

3. Orientation of structures in the current stress field 

The current strain rates in Fennoscandian Shield are rather low and thus cannot produce new 

structures but rather reactivate old structures, joints and extension fractures, where stress 

overcomes fault friction. The potential of reactivation of the pre-existing deformation zones 

and faults depend on the directions and relative magnitudes of the principal stresses, and the 

stress state, as well as the orientation of the pre-existing structures. The orientation of the 
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overall maximum horizontal stress field in northern Europe is WNW–ESE to NW–SE. Pre-

existing deformation zones that are optimally oriented in the present stress field can potentially 

be reactivated. 

The deformation zones were analysed for their length and azimuth and they were assigned 

a potential reactivation type (reverse, normal or strike slip) based solely on their azimuth. The 

earthquakes in the seismically most active area, close to Skellefteå, Sweden along the western 

coast of the Gulf of Bothnia and its north-easterly continuation, appear to cluster around the 

shoreline and along post-glacial faults, which are mostly oriented optimally for reverse or strike 

slip faulting. The seismically active Kuusamo area in Finland is transacted by wealth of 

deformation zones all trending in directions optimal for reactivation. 

The seismically active areas are located in areas where the crust is less than 50 km thick. 

Where the crustal thickness gradient trends in a NE–SW direction, e.g. along the faulted western 

margin of the Bothnian Sea and along the Auho-Kandalaksha fault zone in the Kuusamo area, 

the gradient seems to be associated with a zone of increased seismicity. In these areas, the 

crustal thickness gradients are optimally oriented for reactivation.   

 

4. Glacial isostatic adjustment 

It is noted that the zones of increased seismicity in the western flank of the Gulf of Bothnia as 

well as the currently seismically active “postglacial faults” are parallel and along the long axes 

of the ellipsoidal GIA anomaly. The direction of the long axis of the ellipsoid is orthogonal to 

and the short axis is parallel to the maximum horizontal stress in Fennoscandia stemming from 

the opening of the Atlantic. Neither the seismicity nor faulting are following the isosurfaces of 

the ellipsoid.   

 

5. Conclusions 

In the Fennoscandian intraplate area has low seismicity. Most of the earthquakes (99%) occur 

in the upper to middle crust down to 31 km in depth and the seismogenic layer is around 30 km 

in depth. The seismically most active zones appear to be optimally oriented for reverse or strike 

slip faulting stemming from the opening of the Atlantic. 
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1. General 

The European Plate Observation System – EPOS - is a single, Pan-European, sustainable and 

distributed research infrastructure (RI)  (http://www.epos-eu.org/) and it is the sole RI for solid 

Earth Science in ESFRI. EPOS will be an open-access infrastructure, aiming to be the principal 

source of data and tools in geosciences. EPOS will simplify and speed-up the process of 

combining information from different fields of geophysics. EPOS opens a wealth of new 

possibilities for cross-cutting and innovative research in Earth Sciences, their applications in 

society as well as in raw material and energy exploration. EPOS will also stimulate and support 

geographically distributed multidisciplinary studies. At the moment the Research Infrastructure 

Database for EPOS - RIDE ( http://www.epos-eu.org/ride/) includes metadata of the NRI’s 

participating in EPOS. RIDE is constantly being updated. 

In addition to the significant scientific benefits gained through membership in EPOS, 

students and researchers will have an opportunity to gain valuable hands-on experience using a 

modern, integrated RI and data portal. One of the major challenges that educators and 

researchers face is providing students and other researchers with access to and experience using 

modern geoscientific data and analysis tools to adequately prepare them for a fruitful 

geoscience career. EPOS is planning in-house training courses in data usage, summer schools 

for geophysical tools applicable to EPOS data sets and instrumentation. 

At the moment 23 countries are involved and 19 countries have signed LOI, with more 

pending. EPOS is collaborating with other ESFRI’s and other RI’S globally. EPOS comprises 

of solid Earth observatory and laboratory facilities that are already linked with European and 

Global data centers and science programs in their own fields (e.g. ORFEUS, EMSC, GEOFON, 

GGOS, EUREF, TOPMOD, GEOSS, OneGeology and EuroGeoSurveys, ERA-MIN, EUDAT, 

EURAMET, TOPOEUROPE etc.).   

EPOS is essentially an e-science facility summarized at http://www.epos-

eu.org/dataproducts/ict-architecture.html. During IP-project EPOS faces two challenges: (1) 

Integration of highly heterogeneous observational and experimental multidisciplinary data and 

(2) development of e-infrastructures and e-science to support the construction of collaborative 

data platforms.  

EPOS-PP preparatory phase (2010-2014) is finished and EPOS has entered 

Implementation Phase in October 2015 with the help of 18 M€ H2020 Intra-Dev3 grant 

mailto:annakaisa.korja@helsinki.fi
file:///C:/Users/sheinone/AppData/Roaming/Microsoft/Word/fin-epos%5bat%5dhelsinki.fi
http://www.epos-eu.org/
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agreement (Fig. 4). Finland is actively taking part in 4 Working Packages of EPOS-IP: WP3 

National harmonization (UH), WP4 Governance and Legal (UH), WP 13 Geomagnetic 

observations (FMI), WP14 Anthropogenic Hazard (UO; Fig. 6). In Governance and Legal 

Working group UH is involved in drafting the setting up governance structures of TCS and ICS 

and drafting the service contracts between EPOS-ICS and the various TCS and ICS-D. In WP 

13 FMI is involved in the designing the Geomagnetic observatory metadata within 

Geomagnetic observations TCS. In WP14, university of Oulu is setting up a national HUB for 

the human induced seismic events in Finland. In addition, the Finnish RI’s will be transmitting 

data to the several other TCS (WP 8 Seismology, WP10 Geodesy, WP 15 Geological 

information, WP 16 Multiscale laboratories, WP17 Geoenergy testbeds). For this purpose the 

NRI will describe their metadata and accommodating their data flow to EPOS data standards.  

 

2. FIN-EPOS - a FINnish national initiative of the EPOS 

The FIN-EPOS - FINnish national initiative of the EPOS is a research infrastructure 

consortium. The partners of the consortium are: the University of Helsinki, the University of 

and Oulu, Finnish Geospatial Research Institute, FGI, of the National Land Survey (NLS), 

Finnish Meteorological Institute, Geological Survey of Finland, CSC – IT Center for Science, 

MIKES Metrology at VTT Technical Research Centre of Finland Ltd.  The consortium partners 

own and operate the geophysical and geodetic RIs that are distributed across Finland.  

Each partner collects different types of data with different geophysical instruments and 

utilizing different standards for data formatting, archiving and sharing. IT solutions for 

interoperability require certain level of standardization. The EPOS will set standards for data 

formatting and archiving that each partner is obliged to follow and harmonize their data and 

metadata accordingly. The harmonization of data formats and metadata will take place in EPOS-

IP project. This will impose a severe workload in 2016-2019 on all the NRI. Part of this work 

is funded through the Academy of Finland’s  FIRI2015 funding.  

FIN-EPOS has a joint council that will meet twice a year for decision making and strategic 

brainstorming. The council will be assisted by the coordinator, who will be prepare meetings 

and documents, correspond with EPOS-ECO, co-ordinate the metadata cataloging and data 

formatting (harmonization), helping in outlining/updating the FIN-EPOS web pages and 

national entry portal. The consortium is hosted by the Institute of Seismology, University 

Helsinki (ISUH) where the national co-ordination office is placed at (email: fin-

epos[at]helsinki.fi, URL: http://www.helsinki.fi/geo/). The consortium chair is RD Annakaisa 

Korja, vice-chair is prof. Markku Poutanen from the FGI and the coordinator is Tommi 

Vuorinen.  

The short-term goal of the council is to ensure that each partner is committed to applying 

EPOS metadata catalogues and data format standards to their own data sets, to build and design 

of national entry portal/ Finnish interface. 

The longterm goal of the council is ensure that Finland benefits from joining EPOS-ERIC 

as a country. For this purpose,  the FIN-EPOS council discusses the long-term scientific goals 

of EPOS and FIN-EPOS communities and build a solid Earth sciences RI plan to support the 

scientific goals. The discussions are also the basis for Nordic RI collaboration and for joint 

Nordic participation in EPOS-ERIC advisory committees.  
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Mesoproterozoic rapakivi granite and associated gabbro-anorthosite magmatism are considered to be anorogenic, 

i.e., to have no causal relationship with the hosting Paleoproterozoic orogenic rocks. In the Fennoscandian shield 

and adjacent sediment-covered areas, the 1.65–1.47 Ga rapakivi granite magmatism is mainly felsic in composition 

and represented by both large batholiths >100 km in diameter as well as smaller stocks. The rapakivi granite and 

associated mafic magmatism have been attributed to partial melting of lower crustal or upper mantle sources, but 

the heat source of the magmatism has remained unresolved. We propose that the most plausible heat source for 

Fennoscandian rapakivi granite magmatism was provided by the radiogenic heat production of the crust initially 

thickened in the Paleoproterozoic late Svecofennian orogeny at ca. 1.86 Ga. The seemingly anorogenic magmatism 

may actually be post-orogenic with a link to the long-term thermal evolution of the host rocks. 
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1. Introduction  

The Fennoscandian shield and adjacent sediment-covered areas are characterized by 

extensive Mesoproterozoic rapakivi granite and minor gabbro-anorthosite intrusions. 

Comparable Mesoproterozoic anorogenic bimodal magmatism is common also in other areas 

and continents with varying proportions of felsic and mafic components (Rämö and Haapala, 

1995; Dörr et al., 2002; Vigneresse, 2005, and references therein).  

The rapakivi magmatism in the Fennoscandian Shield has been considered as anorogenic 

in nature, commonly due to magmatic activity of the mantle resulting in magmatic underplating 

and partial melting of the lower crust (e.g., Rämö and Haapala, 1995; Elo and Korja, 1993). 

We present a model for the genesis of the rapakivi granite and related mafic magmatism 

based on thermal evolution of crust collision-thickened during late Svecofennian time (~1.86 

Ga). Collision-thickened crust warms up by conductive heat transfer due to radiogenic heat 

from U, Th and K. This crust-derived heat affects not only the crust, but inevitably also the 

upper mantle by gradually increasing the lithospheric temperatures and eventually generating 

melts in the crust and even in the upper mantle.  

 

2. Thermal effects of crustal thickening 

We apply here a conductive heat transfer model of Svecofennian collisional crustal 

thickening adapted from Kukkonen and Lauri (2009).  In our model the crust is thickened 

instantaneously at 1860 Ma from 30 km to 70 km by tectonic stacking of layers of 

metasedimentary and volcanic rocks. Conductive heating of the crust is due to radiogenic heat 

production from decay of U, Th and K. In about 30 Ma time the thickened crust is already 

heated sufficiently for partial melting at 30-50 km depth, and the melts are emplaced in the 

middle-upper crust boundary as late-orogenic granites at the magmatic and metamorphic peak 

of the orogeny. The heating, however, does not stop with the late-orogenic granitoid formation, 

because the crust remains (and remains even today) very thick. Without erosion of the stack, 

the temperatures would become excessively high. Removal of heat sources by erosion and the 
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simultaneous downward movement of the surface level (temperature at 5°C) result in typical 

counterclockwise loops in the metamorphic P-T diagrams. 

The conductive heating in the thick crust continued steadily after 1.8 Ga, because the 

crust remained thick keeping its total radiogenic heat sources at an elevated level. Slowly the 

heating affected also the upper mantle and straightened the geotherm. Simultaneously the 

heating progressed upward in the crust and finally, about 200-250 Ma after the Svecofennian 

collision and tectonic stacking, a new phase of melting was initiated in the middle crust. 

Dehydration melting of biotite in fertile layers started at 800-850ºC and continued until about 

900 ºC when all biotite was consumed. Melting was possible in our model at 30 km from about 

1.7 Ga. Correspondingly, the lowermost crust at 40-50 km would have exceeded 1000 ºC at 

times <1.7 Ga. The heating of the collision thickened crust did not affect solely the crust but 

also the upper mantle, and temperatures beneath the crust were also elevated by several hundred 

degrees. This heating could provide a mechanism for generating coeval mafic magmas by 

partial melting of the mantle (or mafic rocks in the lower crust to make anorthosites). 

 

3. Conclusions 

Our interpretation is that the Mesoproterozoic thermal evolution was controlled by the 

crustal thickening of the Svecofennian orogenic front at ~1.86 Ga and subsequent post-orogenic 

heating. Conductive heating of lower crust and uppermost mantle in the ‘anorogenic’ time 

provided the conditions required for the generation of the bimodal rapakivi granite suite. Crustal 

radiogenic heat generation was the most important heat source for the rapakivi granite 

magmatism. The long delay between the Svecofennian orogenic peak and the onset of rapakivi 

magmatism is attributed to slowness of conductive heat transfer in a thick crust. Due to the 

causal relationship with the Svecofennian orogeny, rapakivi granites should not be considered 

anorogenic but post-orogenic. 
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The  Kumpula Campus Drill Hole Project comprises a fully cored diamond drill hole in the Kumpula campus 

of the University of Helsinki and a representative suite of wire-line logs. The main purpose of the drill hole is in 
undegraduate education in borehole geophysics, wireline logging, petrophysics and geological logging of the core 
as well as 3D modeling of downhole and surface structures. 

 

Keywords: Drill holes, core samples, wireline logs, crystalline rocks, Kumpula campus, 

Helsinki, Finland 
 

1. Summary 

 A 370 m deep drill hole with continuous coring was drilled in the southern part of the 

Kumpula campus of University of Helsinki in late 2015. In addition to the drilling, a number of 

wireline logs were measured as a contracted service for a full characterization of the geology 

and geophysics of the hole. The main use of the drill hole will be in undegraduate education in 

borehole geophysics, wireline logging, petrophysics and geological logging of the core as well 

as 3D modeling of downhole and surface structures. The Precambrian bedrock in the Kumpula 

campus is steeply dipping hornblende gneiss, amphibolite, tonalite and granite. The drilling site 

is on a hilltop on an extensive 1 ha size outcrop. The hole diameter is 76 mm and the hole is 

oriented to NE with a dip of 70°. The campus drill hole is an important component in the 

university infrastructure for the education and research of geosciences. The presentation 

reviews the drilling and logging operations on a densely built campus area and the planned post-

drilling use of the hole and the core. 

 Three related posters present the first results of three Master thesis projects based on the 

campus hole materials. Penttilä et al. (this volume) study the lithology of the drill core, Valtonen 

et al. (this volume) investigate the fracturing of the campus bedrock as revealed by the drill core 

and the outcrops, and Räisänen et al. (this volume) present the first geochemical results of the 

drill core and outcrops using a portable XRF analyzer.   
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Figure 1. Drill site and surface 

projection of the Kumpula campus hole. 

 

 

 
 

Figure 2. Open and closed fractures and 
neosome veins in gneiss at 215 m. 

 

 

 

 
 
Figure 3. A selection of downhole logs
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Inari orocline is a collage of Lapland granulite belt (LGB) and the Tana (TB) and Karasjok (KB) belts. The arcuate 

shape geometry of the Inari orocline has been traditionally interpreted to have formed coevally with SW directed 

thrusting. We propose, based on preliminary data and interpretations, that the Inari orocline is instead a secondary 

orocline, characterized by radial fractures and conical folds, formed during buckling about a vertical axis of 

rotation. Also the formation of Au mineralizations can be tentatively linked to the buckling stage. 
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1. Introduction 

Oroclines or curvatures of previously linear arcs (or belts) are tectonic structures that bridge 

manufacturing of arcs and formation of stable, equant continental blocks. Oroclines are well 

documented and spatially distributed on a global scale and form curved mountain belts of 

varying degree both in young and ancient orogens (Johnston et al., 2013). We have recently 

demonstrated that the Precambrian terranes offer excellent exposures, representing windows 

into deep levels of orogens, to study the crustal roots of oroclines by taking the Bothnian 

oroclines of Fennoscandia as an example (see Fig. 1; Lahtinen et al., 2014). Johnston et al. 

(2013) recognized two distinct types of oroclines: progressive and secondary. Progressive 

oroclines are thin-skinned (thrust sheet/thrust belt) and develop during thrusting in response to 

the same orogen-perpendicular stress responsible for thrust sheet emplacement. Secondary 

oroclines occur at the scale of an orogen, are plate-scale features that affect crust and 

lithospheric mantle, and form in response to an orogen parallel principal shortening direction.  

 

2. Inari Orocline 

Inari orocline (Fig. 1) is a collage of the Lapland granulite (LGB), Tana (TB) and Karasjok 

(KB) belts. The TB and KB are located south-southwest and northwest of the LGB, respectively 

(not shown in the map). The LGB is correlated with the Umba granulite belt (UB in Fig. 1) 

suggesting continuation of the Inari orocline to the southeast. The bending of the Belomorian 

rocks (marked with ? in Fig. 1) is probably also related to the formation of the Inari orocline. 

The evolution of the LGB in Finland has been studied for decades by Finnish (Tuisku and 

Huhma, 2006 and Tuisku et al., 2006 and references therein) and French geologists (Cagnard 

et al., 2011 and references therein) and most of them agreed that the lithological package 

(LGB+TB+KB) developed between 1.91-1.87 Ga during SW directed thrusting and shortening. 

The arcuate shape geometry of the LGB has been considered coeval with thrusting (e.g., Gaál 

et al., 1989) suggesting that the Inari orocline constitutes a progressive orocline.  

 

3. Secondary orocline hypothesis 

Existing studies (see above) indicate that the peak metamorphic conditions of the Inari orocline 

were attained just before or syn- thrusting followed by decompression. Coeval basal thrusting 

and early normal-sense shear-zones have been considered important in the exhumation history 

(Cagnard et al., 2011). Based on existing studies and our preliminary field data we propose 

following stages for the LGB evolution: 1) extension/thrusting and intrusion of enderbites at 

≥1.91 Ga leading to peak metamorphic conditions; 2) main thrusting phase at ≤1.91 Ga (Fig. 
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1); 3) extension and decompression melting at 1.90-1.88 Ga; 4) renewed shortening with 

relatively low angle to stage 2 thrusting at 1.88-1.87 Ga; 5) buckling at ≤1.87 Ga. 

 

 
 

Figure 1. Left: A geological map of Fennoscandia. CFGC – Central Finland Granitoid 

Complex; LGB – Lapland granulite belt; UB – Umba granulite belt. Right: Aeromagnetic map 

of the inset area. Fractures interpreted from the aeromagnetic map and structural vergence 

directions and axial traces are based on preliminary data.  Map data from GTK. 

 

We propose that layer specific short fractures and conical folds in the Inari Orocline (Fig. 1) are 

radial features and have formed during large-scale buckling about a vertical axis of rotation in 

response to an orogen parallel principal compressive stress. Gold mineralization can be 

tentatively linked to the buckling stage.  
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We describe here a newly discovered cross-cutting mafic dyke in the vicinity of Lohja, southern Finland. The dyke 

is E-W trending and about 6 m in width. Only a few zircons were recovered from the dyke despite the high Zr 

contents and they all were inherited. Therefore, the crystallisation age remains uncertain. The dyke is shoshonitic 

in composition and the closest analogues are the Åva lamprophyre dykes in SW Finland. 
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1. Introduction 

Post-tectonic mafic dykes of different ages and compositional groups cross-cut sharply the 

Svecofennian bedrock in central and southern Finland and Russian Karelia (Figure 1). The main 

groups from oldest to youngest are:  

a) 1.84-1.83 Ga lamprophyre dykes of eastern Finland (Neuvonen et al. 1981, Laukkanen 1983, 

O’Brien et al. 2005) 

b) 1.79-1.78 Ga lamprophyre dykes of SW Finland and Russian Karelia (Eklund et al. 1998, 

Andersson et al. 2006, Woodard et al. 2014) 

c) 1.65-1.54 Ga diabase dykes related to rapakivi granite magmatism (Rämö and Haapala 2005) 

d) 1.26 Ga diabase dykes of the Satakunta area (Suominen 1991, Kohonen and Rämö 2005) 

In Uusimaa, southern Finland, several diabase dykes cut the Svecofennian host rock 

(Figure 1). To the west of the 1.65 Ga Bodom and Obbnäs rapakivi granite intrusions is the 

Lohja diabase swarm, where the largest estimated dyke is 30 km long and 10 m wide (Vaasjoki 

1977, Laitala 1987, 1994). 

A newly discovered dyke from the Lohja area apparently belongs to the Lohja swarm. We 

compare the geochemistry of this dyke with data from the above-mentioned main groups to 

estimate whether it belongs to some of them. We also present a preliminary U/Pb age dating of 

the dyke. 

 

2. The Lohja dyke 

The studied mafic dyke is located about 25 km NW from the town of Lohja in a road cut of the 

E18 Turku-Helsinki motorway (Figure 1). The dyke is E-W-trending, 5-6 m in width and 

sharply cross-cuts the surrounding Svecofennian migmatitic garnet-cordierite mica gneiss. The 

inner parts of the dyke are fine to medium-grained and show an ophitic texture, whereas the 

contact to the country rock shows a chilled margin with aphanitic, almost glassy texture. On a 

fresh surface the rock is dark grey, and it contains rounded xenoliths of varying colour and size. 

The main minerals are plagioclase, hornblende, brown mica with secondary carbonate and 

chlorite. The EDS-analyses with FE-SEM also identified rutile, titanite, galena, sphalerite, 

apatite, baryte, epidote, allanite and bastnäsite in the same heavy mineral fraction that contained 

the zircons. The reddish xenoliths are less than 5 mm wide and the light-coloured are larger, ~ 

20 mm wide. There are also ~ 5 mm wide amygdales, filled with carbonate and chlorite (Figure 

2). 
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Figure 1. Geological map of southern Finland focusing on diabase dykes and rapakivi granites. 

Stars indicate lamprophyres: black for Åva (Andersson et al. 2006), grey for eastern Finland 

(Laukkanen 1983) and white for Russian Karelia (Woodard et al. 2014). Cross indicates the 

Lohja dyke (modified after Rämö and Haapala 2005). 

Figure 2. Outcrop photographs of the Lohja dyke. (A) Road cut of the E18 motorway showing 

the 5.5 m wide cross-cutting mafic dyke. (B) Sharp contact with a chilled margin. (C) 

Carbonate- and chlorite-filled amygdales. (D) Light-coloured felsic xenolith. Ophitic texture is 

visible in the mafic dyke. 
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3. U/Pb age dating and geochemistry 

From quite a big sample (~ 6 kg), only 10 zircons were recovered after the standard heavy 

mineral separation process. The BSE-imaging and isotopic analyses were performed in the 

Finnish Geosciences Research Laboratory (GTK, Espoo, Finland) using the FE-SEM and LA-

SC-ICPMS for imaging and isotope analyses, respectively. The U/Pb analyses were performed 

in two steps. Firstly, one spot was placed on each zircon. These showed a range of 207Pb/206Pb 

ages between 1.52-1.86 Ga. Therefore, the two youngest zircons were selected for additional 

analyses.  All combined the results show three groups: (i) 20 analyses with ages between 1.80-

1.86 Ga, (ii) a cluster of 7 analyses with a concordia age of c. 1.78 Ga and (iii) a cluster of 5 

analyses with a concordia age of c. 1.68 Ga. We also tested U-Pb dating on rutile and titanite. 

The rutile was devoid of radiogenic Pb and was discarded. The titanite contained some 

radiogenic Pb but 30 analyses nevertheless showed too low contents of radiogenic Pb and gave 

geologically meaningless results. 

Three samples were collected for geochemical analyses; two from the centre of the dyke 

and one from the chilled margin. They all have very similar compositions and form a tight 

cluster in most diagrams. The dyke shows high content of Fe2O3 but very low MgO, CaO and 

Mg-number along with low ferromagnesian trace element contents (Ni, Cr, Co). The dyke is 

enriched in Rb, Ba, Y and especially in Zr, and shows a fractionated REE pattern. High K2O 

content, K2O/Na2O and Ce/Yb vs. Ta/Yb ratios show that the composition is shoshonitic.  

 

4. Discussion and conclusions 

Despite the high Zr content, very few zircons were recovered and their U/Pb analyses showed 

that they were inherited from older rocks. Zircons either did not crystallize from such a melt or 

they were too small and were lost during the separation. Many of the zircons had been 

heterogeneously affected by some later geological event. The 1.78 Ga age might readily 

correlate with the well-documented post-orogenic magmatism which includes lamprophyre 

dykes. The 1.68 Ga age is unclear as no such a geological event is known in southern Finland. 

Those ages might represent incomplete resetting during the 1.65 Ga magmatic pulse represented 

by the Bodom and Obbnäs rapakivi plutons. In summary, the crystallisation age of the Lohja 

dyke remains uncertain.   

The composition of the dyke is more enriched than the rapakivi-related dykes or the 1.26 

Ga dykes, but less enriched than the lamprophyre dykes in the reference data set (Savolahti 

1964, Laitakari 1969, Laukkanen 1983, Rämö 1990, 1991, Suominen 1991, Lindberg and 

Bergman 1993, Väisänen 2004, Luttinen and Kosunen 2006, Woodard et al. 2014). The closest 

analogue is the Åva lamprophyre dykes with partially overlapping geochemical characteristics 

(Hollsten 1997, Eklund et al. 1998, Andersson et al. 2006).  However, the Åva data is more 

enriched, e.g., in LREE, Ba, Sr and F. Therefore, we prefer to call the Lohja dyke a shoshonitic 

dyke rather than a lamprophyre dyke. 
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High intensity of natural remanent magnetisation in rock formations complicates their modelling based on 

magnetic survey data, especially in cases where the direction of remanence is unknown.  In this paper we present 

a dataset of samples with high natural remanent magnetisation intensities collected throughout the Finnish bedrock 

and discuss some preliminary observations on the data characteristics and their implications on modelling. 
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1. Introduction 

The local variation in the properties and distribution of magnetic minerals (most notably 

magnetite and pyrrhotite) in the crust result in anomalies observed on any magnetic survey map. 

The local anomaly shape and amplitude is affected by the type and characteristics of the 

magnetisation of the minerals: the total magnetisation Mtotal of rock is a sum of two 

components, namely the induced magnetisation Mi and remanent magnetisation Mr: 

 

Mtotal = Mi + Mr = kH + Mr           (1) 

 

where k is magnetic susceptibility and H the Earth’s magnetic field intensity. Magnetic 

susceptibility is a parameter readily measurable with either field or laboratory equipment. Thus, 

as the direction of the Mi is aligned with the Earth’s field, the induced magnetisation vector can 

typically be estimated with some confidence for magnetic anomaly modelling purposes. 

However, applying the permanent remanent magnetisation component Mr to modelling is more 

complex as the direction as well as the magnitude of the component vector need to be 

determined; this requires oriented sampling and laboratory measurements. Hence the remanent 

component is often neglected in the modelling workflow. 

Ferromagnetic minerals are composed of ‘magnetic domains’. In the single domain 

(SD) type the grain size is very small and all magnetic moments within the grain point to the 

same direction. SD minerals can carry a strong remanent magnetisation which can retain its 

original direction for billions of years. In rocks with coarse grained ferromagnetic minerals, 

multi-domain (MD) type dominates, and the magnetic moments within the grain point to 

varying directions.  So called viscose remanence (VRM) can be easily formed in such grains, 

when the remanent magnetisation gradually aligns to the direction of the external magnetic 

field. Small-grained pyrrhotite and magnetite typically contain SD grains, whereas large-

grained ferromagnetic minerals are typically of MD type (e.g. Butler 1992).  

When modelling of bedrock features based on magnetic survey data, we are interested 

in the current in-situ remanent magnetisation of the rock, i.e. the natural remanent magnetisation 

(NRM) prevailing in the rock at the time of the magnetic survey. The magnitude of NRM can 

be measured for any rock sample, and the Königsberger ratio (Q) denotes the significance of 

NRM as a magnetic anomaly source in comparison to induced magnetisation: 

 

Q = |Mr| / |Mi|             (2) 
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For rocks with Q > 1, remanent magnetisation dominates over the induced component. 

In case the direction of a NRM with high Q value is unknown, magnetic modelling of bedrock 

structures becomes an ambiguous process (even more so than geophysical modelling in general) 

as there are simply too many degrees of freedom to solve the modelling problem reliably. The 

issue of NRM in modelling is yet more complicated than merely obtaining reliable parameter 

values: in deformed bedrock the NRM directions within a formation are typically dispersed in 

case the deformation takes place after the rock has gained a stable remanent magnetisation (e.g. 

Mertanen and Karell, 2015, and the references therein). Thus the directions of NRM also 

indicate tectonic and metamorphic events when observed locally. In general, Q values < 1 are 

typical of the Finnish bedrock, but especially for pyrrhotite-bearing schists higher values are 

common (Airo & Säävuori, 2013).  

In this study we use samples with high intensity of remanent magnetisation selected 

from the Rock Geochemical Database of Finland (RGDB) (Rasilainen et al., 2007) of the 

Geological Survey of Finland (GTK) to display and discuss some NRM characteristics in the 

Finnish bedrock.  

 

2. The NRM Dataset 

The Rock Geochemical Database of Finland (Rasilainen et al., 2007), collected in 1990-

1995, contains a total of 6,544 bedrock samples throughout Finland. The main purpose of the 

database is to represent a consistent, high-quality overview of the geochemical properties of the 

Finnish bedrock. Although not published, petrophysical laboratory measurements were also 

conducted for the sample dataset. These petrophysical data comprise determination of density, 

P-wave velocity, porosity, magnetic susceptibility and remanent magnetisation intensity and 

direction. The north directed samples were taken with a portable mini-drill and the N direction, 

measured with hand compass, can be estimated to be accurate within ±10º. Typically the drilling 

was performed vertically with an estimated variation of ±10º for inclination but on steeper 

outcrop surfaces this might have been higher.  

The remanent magnetisation parameters were determined with the GTK in-house fluxgate 

equipment R2 (Puranen & Sulkanen, 1985), most optimal for samples with a volume of 200 

cm3 (Airo and Säävuori, 2013). With the RGDB samples with a diameter of 2.5 cm, the sample 

size proved to be too small to be measured with the fluxgate magnetometer for samples with 

weak to moderate remanence intensity. Duplicate measurements with sensitive SQUID 

magnetometer showed that only samples with NRM intensity ≥ 1000 mA/m had reliable 

precision in the fluxgate measurements. Thus in this study we have only included these samples 

in our inspection; the total number of samples in the subset is 357. 

It should be noted that albeit we can only make use of a fraction of the RGBD sample 

dataset and the data is not representative for the overall distribution of the remanent 

magnetisation or Q value parameters in the Finnish bedrock, this is still (to our knowledge) the 

largest coherent national database of the NRM directions, as the GTK petrophysical sample 

database (Säävuori and Hänninen, 1997) with over 130,000 samples only contains the intensity 

of the NRM but not the direction. 

 

3. The NRM Directions and Magnitudes in the Dataset 

The NRM directions and the related Q values with a histogram of all samples are 

presented in Figure 1. For samples with a NRM direction close to the current Earth’s magnetic 

field direction (declination D = 10 ± 20° and inclination I = 75 ± 20°; a total of 21 samples), 

the Q values largely remain below value 1, suggesting that in these samples the remanent 

magnetisation is aligned in the direction of the current inducing field, the NRM being viscose 

remanence. 
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Figure 1. The NRM directions and Q ratios for the RGDB samples with intensity of NRM ≥ 

1000 mA/m. Numbered regions: 1 = Satakunta, 2 = Pohjanmaa. Background map: GTK 

airborne magnetic data. 

 

The majority of the data does not conform to the current direction of the Earth’s 

magnetic field. We are planning to do more detailed study on the regional NRM variation, but 

based on visual inspection, two examples of NRM ‘domains’ are presented here. In the 

undeformed Satakunta dolerites the remanence directions have low NE pointing directions, 

which are in agreement with paleomagnetic studies of Neuvonen (1965), although there’s more 

variance in the inclination directions. In the Pohjanmaa region the population of samples with 

Q > 10 are mainly related to pyrrhotite-rich volcanic and sedimentary rocks; the variation in the 

declination directions of these supracrustal rocks seem to correlate with  structural vergence 

directions and later folding. Accordingly, when dealing with pyrrhotite, a factor to be taken into 

account is the strong intrinsic magnetocrystalline anisotropy caused by the lattice structure of 

the mineral (Dunlop & Özdemir 1997). Due to the anisotropy the remanent magnetization may 

be deflected from the direction of the ambient geomagnetic field. The remanence direction is 
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then controlled by the geological structures and does not correctly reflect the external magnetic 

field (e.g. Thomson et al. 1991). 

 

4. Discussion 

The dataset presented in this paper highlights some of the complex factors that need to be 

taken into consideration when using the NRM data in the context of modelling of bedrock 

structures from magnetic data. In case of prominent remanent magnetisation, excluding the 

information of remanence from modelling can lead to misinterpretation of bedrock structures. 

Hence, the NRM of the target region should be at least considered and preferably measured 

before the modelling takes place. In case the deformation events postdate the blocking of 

remanent magnetisation, including the NRM direction reliably in any model is a challenging 

task that requires knowledge on the structural characteristics of the region. However, variation 

in the NRM directions itself is an indication of deformation.  
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We report new laboratory measurements on seismic P-wave velocities and densities for 216 rock samples from the 

Kylylahti mine, with the aim of studying the seismic signature of the Kylylahti deposit. The samples were chosen 

to represent, as well as possible, all the relevant lithological units and compositional variation in the Kylylahti 

area. The initial results indicate that the semi-massive to massive sulphide mineralizations cause a strong, reflected 

signal when in contact with any of the hosting rock types. The measurements were carried out at the Geophysical 

Laboratory of the GTK as a part of the COGITO-MIN project.  
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1. General 

University of Helsinki, Geological Survey of Finland (GTK), Institute of Geophysics, Polish 

Academy of Sciences, Boliden Kylylahti, Vibrometric and Geopartner, research institutions and 

industry partners from Finland and Poland, are collaborating on the project COGITO-MIN 

(COst-effective Geophysical Imaging Techniques for supporting Ongoing MINeral exploration 

in Europe). COGITO-MIN aims to develop cost-effective, novel, geophysical deep mineral 

exploration techniques, with particular emphasis on seismic imaging (see for more in Koivisto 

et al., this volume). The seismic reflection data acquisition stage of the COGITO-MIN project 

took place from early August to late September 2016 in the vicinity of the Kylylahti Cu-Au-Zn 

mine in Polvijärvi, eastern Finland. The Kylylahti mine is operated by Boliden and is located 

at the northeastern side of the famous Outokumpu mining and exploration area containing 

Outokumpu assemblage rocks – i.e., serpentinite, carbonate, skarn and quartz rocks, usually 

wrapped in black schist and embedded in mica schist – that host Outokumpu-type Cu–Co–Zn–

Ni–Ag–Au ores. The Kylylahti deposit comprises three north-northeast elongated semi-massive 

to massive sulphide lenses along a contact between the carbonate–skarn–quartz rocks and the 

black schists. The long history of geological and geophysical studies in the Outokumpu area, 

also including earlier seismic reflection profiles (e.g., Heinonen et al., 2011; Kukkonen et al., 

2012), makes the site ideal for testing new concepts.  

Accurate interpretation of the acquired COGITO-MIN seismic data relies upon accurate 

petrophysical characterization of the targets, in particular, upon understanding the acoustic 

properties in detail. Earlier borehole measurements on the seismic velocities and densities of 

the ore-bearing Outokumpu assemblage rocks reported by Heinonen et al. (2011), and 

theoretical seismic velocity and density estimations by Kukkonen et al. (2012) for the 

Outokumpu-type ores - as well as recent seismic forward modelling results by Komminaho et 

al. (2016) - imply that both the Outokumpu assemblage rocks and the ore bodies themselves 

produce detectable seismic signals. However, these results are based on geophysical logging 

data from the Outokumpu Deep Drill Hole at the southwestern side of the Outokumpu area, 

with no representative seismic velocity measurements for the Outokumpu assemblage rocks 

previously available from elsewhere in the overall Outokumpu area, and in particular, with no 

seismic velocity measurements available for the Outokumpu-type ores at all. The established 
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variation of other petrophysical properties across the Outokumpu area (e.g., Leväniemi 2016), 

in particular the density variation, implies that also the reflectivity characteristics of the 

Outokumpu assemblage rocks and the Outokumpu-type ores may vary. Thus, new seismic 

velocity and density measurements, as well as measurements of other petrophysical properties, 

were conducted within the COGITO-MIN project during summer 2016, in order to better 

understand the acoustic properties of the Kylylahti exploration targets. 

 

2. Sample sets and measurements 

31 samples of the Outokumpu-type ores from the overall Outokumpu area were provided by 

Asko Kontinen. These were hand specimen samples and their exact coordinates were not 

known, only the general area of origin (e.g., Luikonlahti, Vuonos etc.). A total of 216 rock 

samples were provided by Boliden Kylylahti. The samples were mainly drill core samples from 

six different boreholes in the Kylylahti mine, but seven hand specimen samples were also 

collected from the piles of the excavated ore. The samples were chosen to represent, as well as 

possible, all the relevant lithological units and compositional variation in the Kylylahti area. 

The measurements were carried out at the Geophysical Laboratory of the GTK.  

 The samples were prepared to get even-ended and suitably sized pieces of the drill cores 

(or halves of them; the samples included both full drill cores and halved drill cores) and hand 

specimens. The parameters determined in the measurements were density, porosity, magnetic 

susceptibility and the intensity of remanent magnetization, electrical properties, including 

inductive and galvanic resistivity and chargeability, and P-wave velocity. Measurements were 

conducted according to the laboratory procedures of the GTK (e.g., Airo et al., 2011). Herein, 

results from the P-wave velocity and density measurements of the 216 samples provided by 

Boliden Kylylahti are reported. 

 P-wave velocities were measured using ultra-sonic transducer in room temperature and 

pressure. Samples were immersed in water for ten days before the first measurements. 

Measurements were then repeated twice more, after twenty and thirty days of immersion in 

water. Time of water immersion may have a considerable effect on the results; longer water 

immersion time increases the P-wave velocity (Airo et al., 2011; Säävuori, pers. comm. 2016). 

Velocities measured showed a small increase with the immersion time (less than one percent on 

average). Velocities shown here are weighted averages of all three measurements, with most 

weight given for the last measurement.  

 Density was determined by weighing a sample in air and suspended in water. The dry 

bulk density can be calculated from these measurements. Measuring accuracy is ±0.1%. Density 

was measured in the beginning of the measurements and after 30 days of soaking in water. The 

second density measurement was mainly to get the wet weight for porosity measurements. 

 

3. Results 

P-wave velocities and densities for the samples provided by Boliden Kylylahti are shown in 

Figure 1.  

 Generally, the results shown in Figure 1 indicate strong enough contrasts in acoustic 

impedances (product of density and seismic velocity) to produce a detectable reflected signal 

from contacts between the Outokumpu assemblage rocks and the surrounding black schists and 

mica schists, as well as varying acoustic impedances for the Outokumpu assemblage rocks. 

However, for example, a contact between mica schists and black schists may not produce a 

reflection, and the quartz rocks are associated with wide ranges of seismic velocity and density  
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Figure 1. A) Average density and P-wave velocity for the 216 samples provided by Boliden 

Kylylahti, with standard deviations presented as error bars. B) The actual scatter plot for all the 

data. Constant acoustic impedance (product of density and seismic velocity) curves in MPa·s/m, 

with a line spacing corresponding to a reflection coefficient of 0.06 (considered to be enough 

for a detectable reflection; e.g., Salisbury et al., 1996) between two successive lines, are shown 

for reference. N in the legend indicates the number of samples.  
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values (Figure 1B) indicating that systematic reflected signals may not be produced from 

contacts to quartz rocks. Nevertheless, the semi-massive to massive sulphide mineralizations 

are characterized with distinctly higher densities, and therefore acoustic impedances, than the 

other rock types. Thus, the ore bodies should cause a strong, reflected signal when in contact 

with any of the Outokumpu assemblage rocks or black schists enveloping them. 

 

4. Conclucions 

These new petrophysical measurements give more insight to the representative acoustic 

properties of the Outokumpu assemblage rocks and the Outokumpu-type ores in the Kylylahti 

area. Before this study, no representative P-wave velocity measurements existed for the 

Outokumpu assemblage rocks at the eastern side of the Outokumpu area, and no P-wave 

velocity measurements for the Outokumpu-type ores at all. Density values seem to confirm 

trends found in previous studies (e.g., Leväniemi 2016).  

Generally, the results of this study indicate strong enough contrasts in acoustic 

impedances to produce a detectable reflected signal from contacts between the Outokumpu 

assemblage rocks and the surrounding black schists and mica schists, as well as varying acoustic 

impedances for the Outokumpu assemblage rocks. In particular, the results indicate that the 

semi-massive to massive sulphide mineralizations should cause a strong, reflected signal when 

in contact with any of the hosting rocks.  

Future work includes more detailed analyses of the measurements, with all the other 

petrophysical parameters measured, as well as available geochemical and geotechnical data on 

the same rock samples. The 31 hand specimen samples of the Outokumpu-type ores, not 

reported herein, will also be analysed. The results of the petrophysical analyses will be utilized 

in the interpretation (including seismic forward modelling) of the seismic reflection data 

acquired in the Kylylahti area during COGITO_MIN project. 
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Kevitsa is a disseminated Ni-Cu-PGE ore body in northern Finland, hosted by an extremely high-velocity (6-8 

km/s) mafic-ultramafic intrusion. It is currently being mined at a depth of about 100 m using open-pit mining 

method. The mine life is expected to be about 20 years, with the final pit depth at around 400-500 m. Based on a 

series of 2D seismic surveys and given the expected mine life, a high-resolution 3D seismic survey was justified 

and acquired in winter 2010. Various researchers and teams have exploited these data because of the unique nature 

of geology, and the data being challenging to interpret but rich in reflectivity. In this study, we present 3D reflection 

data processing results and complement them with 3D first break tomography work recently carried out. The 

combined results allow to provide some insights about the nature of some of the reflectors. It for example shows 

how the tomography results can be used for rock quality studies and further planning of the pit. In particular, we 

observe a major fracture system, resolved by the tomography results and running in the middle of the planned pit, 

with the reflection data providing information about its depth extent, estimated to be at least about 500 m. We 

argue that 3D seismic data should be acquired prior to commencement of mining activities in order to maximize 

exploration efficiency at depth, but also to optimize mining as it continues towards depth.  
 

Keywords: 3D seismic, hard rock, exploration, mining, Kevitsa 

 

1. Introduction 

Kevitsa 3D seismic survey (~ 9 km2; winter 2010, Figure 1) was motivated by four 2D seismic 

profiles acquired in 2007 as a part of the HIRE national seismic program of the Geological 

Survey of Finland (Kukkonen et al., 2009; Koivisto et al., 2012 and 2015), with the primary 

goals of the 3D survey being open-pit mine planning and deep exploration of massive sulphide 

occurrences within the resource area (Malehmir et al., 2012; Malehmir et al., 2014). 

Disseminated Ni-Cu-PGE mineralization is hosted in olivine pyroxenite, Kevitsa intrusion, 

surrounded by volcano-sedimentary rocks. These various rock units exhibit velocities ranging 

from 4000 to 8000 m/s in more than 11 deep (> 800 m) boreholes logged using full-waveform 

sonic and VSP measurements (Malehmir et al., 2012). During the processing of the 3D data, it 

became obvious from the refraction static model that the bedrock required high velocities on 

the order of 7500 m/s within the planned open pit. Although the data were high seismic fold, 

respective receiver and shot line spacing of 70 and 80 m, and receiver and shot point spacing 

of 15 and 45 m, the high velocity background resulted in poor reflectivity signatures in the first 

couple of hundred meters of the migrated reflection volume (Malehmir et al., 2012). 

Pronounced reflectors within the planned open pit and greater Kevitsa intrusion were observed 

to start from 150-200 m depth and were related to either magmatic layering within the Kevitsa 

intrusion or faults and fracture systems both of which had implications for the design of the pit 

and future exploration at the site. A tomography test was conducted to cover the near surface 

reflectivity gap and, if possible, to be used for rock quality studies to aid mining at the site. No 

tie with surface geology has been possible until recent advance of mining to almost 100 m depth 
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in certain locations, allowing improved interpretation of the reflection and tomography results, 

which will be the focus of this study. 

 

Figure 1. Geological map of Kevitsa showing the location of the planned open pit (stage 4), 

3D seismic survey area, and 2D seismic profiles E2, E3, E4 and E5 in the inset map. The 3D 

seismic data and derived tomography results are the focus here. 

 

2. 3D first break tomography 

Turning-ray 3D traveltime tomography (Tryggvason et al., 2002) was carried out using about 

2.5 millions of first breaks after testing various parameters and tuning the inversion parameters, 

also excluding bad quality picks. Tests were carried out using various cell sizes and various 

upper and lower velocity bounds. Finally, an inversion cell sizes of 10x10 m horizontally and 

5 m vertically for the top of the model were selected. Below 50 m depth, cells of 10x10x10 m 

were used. The smaller cells on the top of the model were used to better account for the variable 

bedrock depth and to avoid velocity artefacts in deeper cells due to a large velocity contrast at 

the bedrock interface. In this case, a large velocity contrast between the glacial sediments and 

the bedrock was expected. In the end, the inversion was done in several steps, using a subset of 

the data to derive a coarse model that was later resampled to the final cell sizes. The final seven 

iterations with all the data were then done using this model as a starting model. This procedure 

was time consuming, but resulted in better data fit and a more reasonable model than if all the 

data were inverted in one step starting for example from a 1D starting model. The final 3D 

tomography model shows a maximum depth penetration of about 200 m with some gaps in the 

model (no ray coverage) around this depth range. 

 

3. Results 

Figure 2 shows a series of 3D views from the reflection seismic volume, bedrock surface as 

surveyed after the removal of overburden and prior to the start of mining, RQD and tomography 

velocity models. Several bedrock lineaments are notable particularly one running nearly in N-

S direction (R8). Kevitsa intrusion is clearly notable in the tomography model as a region of 
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high velocity. Nevertheless, a major low-velocity zone in the same direction as R8 and crossing 

the planned open pit can be seen in the depth slice of the tomographic model (Figure 2d). There 

are also indications of low and high velocity regions within the intrusion that may indicate 

variations in rock competency, probably due to the degree of talc alteration and fracturing. The 

low-velocity zone loses its definition towards greater depths in the tomography volume. 

However the reflection volume suggests a pronounced reflector (R8 at about -110 m elevation 

in Figure 2a) with similar orientation as the low-velocity zone suggesting the same structures. 

The exposed bedrock (Figure 2b) and drillhole fracture data indicate a brittle fracture and fault 

system (Lindqvist, 2014) gently WNW-dipping (about 35°). The R8 structure appears to also 

provide a boundary to the reflectivity pattern within the intrusion and thus may be important in 

controlling mineralization and its lateral extent in Kevitsa (Koivisto et al., 2015).  

One of the objectives of the 3D tomography was to use the velocity model to predict 

probable blasting and crushing conditions in terms of rock competency. Rock competency can 

be related to both degree of fracturing, which is important in the near-surface region and close 

to large structures, and to talc alteration, which has important implications for crushing and 

processing. Figure 2c shows a 3D visualization of the RQD model derived from existing 

boreholes (interpolated using a distance weighting method) and can be compared with the 

tomography results shown in Figure 2d from the same view. A visual comparison between the 

 

 

 

Figure 2. 3D views showing (a) a depth slice from the migrated volume at about 110 m below 

sea level, and bedrock surface (coloured region around 230 m above sea level) and lineaments 

(black arrows) as surveyed after the removal of the overburden and before mining activities 

commenced. Note some of the lineaments have similar orientation as the reflector (R8) seen at 

-110 m level in the reflection volume. (b) R8 is believed to be associated with a gently dipping 

fracture system as it is now being exposed and mined. (c) RQD versus (d) tomography models 

showing an excellent correspondence between the two and clear signature of the R8 fracture 

system in the models. 
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two models suggests a good correspondence between the low-velocity zones and low RQD 

regions suggesting that the velocity model can be used to help inform blasting, crushing, and 

processing behaviours. 

 

4. Conclusions 

3D tomography was employed to link near-surface geological features with those interpreted 

from the reflection seismic volume, given that the reflection seismic survey parameters and 

extremely high velocities caused a major loss of reflectivity near the surface. The tomography 

revealed a major low-velocity zone in the bedrock associated with a gently dipping reflector 

observed at about 150 m depth and extending to depths of more than 500 m. Qualitative 

correspondence between the velocity and RQD models implies that the velocity model can be 

used for predicting rock competency, and thus material behaviour during blasting, crushing and 

processing. 
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In this article we describe a methodology to extract continuous slip profiles for postglacial faults using LiDAR 

DEM data. The acquisition of continuous slip profiles provides more complete data for the estimation of 

earthquake dynamics, which further serves as detailed input data for seismic risk assessment. Slip profiles also 

contain information of the propagation history of fault segments and can thus be applied in the characterisation of 

earthquake dynamics. 
 

Keywords: postglacial faults, neotectonics, earthquake, LiDAR, slip profile, seismic hazard 

assessment, Finland 

 

1. Introduction 

Topographic and recently acquired LiDAR data from northern Finland show prominent fault 

scarps that can be related to postglacial deformation (e.g. Kujansuu, 1964; Kuivamäki et al., 

1998, Palmu et al. 2015) and as such the scarps are also considered as manifestations of past 

earthquakes associated with the release of horizontal flexural stresses during endglacial phase 

(e.g. Arvidsson, 1996). From a seismic hazard point of view, it is important to assess the 

frequency-magnitude relations of such earthquakes and typically the magnitude estimations are 

carried out by using well known scaling laws linking fault slip values and the lengths of the 

fault scarps to earthquake magnitudes (e.g. Wells & Coppersmith 1994, Leonard 2010). 

Frequency-magnitude assessments are important for example in the safety assessment of deep 

nuclear waste repositories, which need to look at seismic risk for a time period of up to 1 Ma. 

Typically the slip values for the faults are acquired by measuring fault scarp heights at sporadic 

locations by making vertical cross sections through the fault scarps and measuring the height 

difference between the top and bottom of the scarp, but in this paper we present a methodology 

to measure full slip profiles by the use of LiDAR data.  This data can further be used in the 

assessment of the distribution of slip values, which provides much more efficient tool for 

assessing earthquake dynamics. LiDAR data also allows constraining of the kinematics of the 

postglacial faults as the surface ruptures occasionally show evidence of a horizontal slip 

component aside the prominent reverse faulting. Typical examples of horizontal slip component 

are shown for example through en echelon array of surface ruptures and restraining bends 

showing upheaval of glacial sediments with respect to surrounding topography. 

 

2. Methodology for measuring fault slip profiles 

In our proposed methodology, a polyline is digitized both at the top and bottom of the fault 

scarps and the polyline is then draped onto the LiDAR DEM in such a way that the polyline 

honours the true topography of the fault scarp. After this either of the polylines is divided into 

a set of points, separated by a preset distance of 1 meter, for example. For each of the points, 

the closest point to the remaining polyline is then searched for and once these two points are 

joined, this forms a vector that is perpendicular to the latter polyline. The z-component of the 
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resulting vector then represents the vertical height of the fault scarp and the slip profile for the 

fault scarp is then acquired by collecting the z-components of each vector as a function of the 

distance from the beginning of the fault segment.  

In this paper we use a fault scarp observed at Riikonkumpu area (Ojala et al. 2016, Mattila 

et al., 2016), located east of Kittilä as a case study. The fault system consists of several fault 

segments which cover a distance of ca. 15 km in SW-NE orientation (Figure 1). We focus first 

on segment 2b (Figure 1) as an example of slip profile acquisition. We first manually digitize 

polylines to the top and bottom of the scarp, drape the polylines onto the 2 meter resolution 

LiDAR DEM (Figure 2) and then extract vectors in one meter intervals as described in the 

preceding section (Figure 3). The extracted vertical slip profile of the analysed fault segment is 

shown in Figure 4. The full slip profile for the Riikonkumpu fault system, including also a 

cumulative slip profile, is shown in Figure 5. 

 

 

Figure 7. Geometry and structure of the Riikonkumpu fault system. 

 

 

Figure 8. Polylines digitized onto the top and bottom of the segment 2b scarp of the 

Riikonkumpu fault system. Screenshot from Leapfrog-software. LiDAR point cloud data by 

National Land Survey of Finland and DEM processing (from the point cloud data) by 

Geological Survey of Finland. 
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Figure 9. Vectors perpendicular to the polyline representing the bottom of the fault scarp 

extracted in set interval. The z-component of the vectors represents the vertical height of the 

fault scarp at the location of the vector. 

 

 

Figure 10.Vertical slip profile of the segment 2b of the Riikonkumpu fault system. Not that to 

reduce noise within the measurements, the data has been smoothed by computing a moving 

average with a bin size of 50 meters. 

 

 

Figure 11. Vertical slip profile (middle diagram) and cumulative slip profile (upper diagram) 

for the Riikonkumpu fault system. 
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3. Conclusions 

The methodology proposed in this paper allows the extraction of continuous vertical slip 

profiles for postglacial faults by using LiDAR DEM data. The use of the continuous slip data 

allows more comprehensive extraction of slip statistics and as such also serves as detailed input 

data for the estimation of earthquake magnitudes and seismic risk assessment. Slip profiles may 

further be used as a tool for the assessment of the propagation direction of earthquake surface 

ruptures and the evolution of whole fault systems. In light of the known postglacial faults, the 

application of the methodology with LiDAR DEM allows unprecedented way to characterise 

the evolution and dynamics of the faults. 
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Based on new geochemical and age data from the supracrustal rocks bordering the Central Finland Granitoid 

Complex in southeast represent the eastern continuation of the classical Tampere group volcanic rocks and 

paragneisses of the Pirkanmaa migmatite suite. The volcanic units in the study are represent mainly intermediate 

calc-alkaline rocks formed in arc setting between 1895 and 1875 Ma. Only small units directly associated with the 

Pirkanmaa migmatite suite have picritic compositions. Unmigmatized greywackes of the Pirkanmaa migmatite 

suite have maximum deposition ages of 1.90–1.92 Ga, whereas for the migmatitic sample the corresponding age 

is 10 to 20 ma younger. 
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1. General 

Our study area is located at the contact between the Central Finland Granitoid Complex (CFGC) 

(Figure 1) and supracrustal units, both volcanic and sedimentary, flanking it to south-east. Over 

the last five years significant amount of new data have been accumulated in ore potential 

estimation project of the Geological Survey of Finland. Here we shortly summarize the results 

related to the ages and composition of the supracrustal units in the area. The volcanic and 

metasedimentary units have been regarded as the eastern continuations of the Tampere group 

volcanic rocks and Pirkanmaa migmatite suite rocks, more intensively studied further west 

(Kähkönen 2005, Lahtinen et al. 2009). 

 

2. Makkola suite 

The volcanic rocks in the study area form a discontinuous belt trending northeast. Preservation 

of the primary structures varies, locally they are well preserved, but often destroyed by 

deformation and metamorphism, especially near the Leivonmäki Shear Zone running parallel 

to the volcanic rocks. The primary structures vary from volcanic breccias to massive tuffs and 

tuffites with clear sedimentary structures. Due to combination of often poor exposure and 

deformation, stratigraphic approach was not possible, instead the volcanic rocks were divided 

into lithodemes based on composition and original structures. 

Compositionally the rocks forming the Makkola suite are calc-alkaline, mainly intermediate to 

felsic rocks, with limited amount of basic variants, the latter are mainly subvolcanic dykes and 

small intrusions. Based on geochemical data all the small separate segments are similar and 

originally part of the same larger sequence. Effects of chemical alteration are observable, but 

only in limited cases the alteration has been pervasive. 

Based on five age determination samples the age of volcanism in the area varies from 1895 Ma 

to 1875 Ma, which coincides with plutonic rocks surrounding the volcanic rocks. One of the 

samples interpreted to represent mainly intraformational sediments also contained detrital 

Neoarchean zircons. 

 



LITHOSPHERE 2016 Symposium, November 9-11, 2016, Espoo, Finland 92 

 

 

 
Figure 1. General geological map of the study area and its surroundings located southwest from 

the Raahe-Laatokka shear zone (RLSZ) and transected by Leivonmäki shear zone (LmSZ). The 

volcanic rocks forming the Makkola suite are located between the Central Finland Granitoid 

Complex and Pirkanmaa migmatite and intrusive suites. Map modified from DigiKP. 
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3. Pirkanmaa migmatite suite 

Contact between the metasedimentary rocks interpreted to belong to the Pirkanmaa migmatite 

suite in the study area are, based on field observations and geophysical data tectonic with both 

the Makkola suite and CFGC. 

Metasedimentary rocks forming the Pirkanmaa migmatite suite form two major groups: well 

preserved unmigmatized greywackes and intensively migmatized and folded paragneisses. 

Small amount of volcanic rocks occur in within the Pirkanmaa migmatite suite, typically in the 

vicinity of its contacts with the CFGC or Makkola suite. These volcanic rocks are typically 

intensively altered, but differ from the Makkola suite with their picritic compositions. 

All of the three age determination samples from unmigmatized greywackes, with conglomerate 

and pelite interbeds, contained similar zircon populations: abundant Paleoproterozoic zircons 

with ages from 1.91 to 2.10 Ga and another Neoarchean peak. The one migmatized sample 

deviated from the unmigmatized ones as it did not contain Archean zircons and the youngest 

detrital zircon was ca 1890 Ma in age, albeit defining reliably the age of the youngest detrital 

zircon in migmatized samples is an ambitious task. 

 

4. Results 

The age and geochemistry of the Makkola suite are mainly similar to those previously reported 

for the Tampere group (Kähkönen 2005 and references therein) and also for the smaller volcanic 

segments within the CFGC (Nikkilä et al. 2016). Major difference is that the equivalent of the 

Myllyniemi formation, i.e. lower turbiditic sequence of the Tampere group deposited before 

major volcanic activity, was not found in the study area. 

The detrital age results from the Pirkanmaa migmatite suite are similar to those reported earlier 

(Lahtinen et al. 2009). Three of the samples must have been deposited prior to the volcanic 

activity of the Makkola suite or as the contact is tectonic, at such a distance or location that the 

Makkola suite did not form its source. For the fourth sample Makkola suite is a potential source 

for part of the zircon population. 
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We give some insight to the shock wave interactions in heterogeneous samples such as ordinary chondrites of type 

H and into the numerical setup for shock recovery experiments. We used the shock physics code iSALE 

(Wünnemann et al., 2006) to qualify the interactions of the shock wave due to impedance contrasts between 

materials of different origins and the shock wave reflections at the materials boundaries. To quantify the results 

we analysed the reflection index of materials and the enhancement of the pressure in the different setups. This 

article is in the scope of the shock-darkening study by Kohout et al. (2014) and submitted work from Moreau et 

al., (2016). 
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1. Introduction 
To study the shock-darkening in ordinary chondrites (process during which metals and iron 

sulphides melt into a network of veins rendering the chondrites lithology darker) we used the 

shock physics code iSALE to generate shock waves in an olivine sample containing particles 

of iron and troilite (mesoscale modelling). Results showed complex shock wave interactions 

within the heterogeneous medium. 

In addition to the shock-darkening study, we used the iSALE code to simulate shock 

recovery experiments on meteorites (Langenhorst and Deutsch, 1994; Langenhorst and 

Hornemann, 2005), representing an olivine sample embedded in a steel (iron) container.  

Figure 1. Conceptual models for the mesoscale setup (Moreau et al., 2016) and the shock 

recovery experimental setup. 
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2. Methods 
For both numerical setups, we implemented layers of specific materials. One layer was a flyer 

plate that, given some velocity, generated the planar shock wave to the layers beneath it. Each 

setup had its own specific strength properties and resolution of the layers (in width and height). 

In Figure 1 can be seen the conception models for each setup. 

To analyse the shock wave interactions within the samples, we used the reflection index 

that is the amount of time an element (Lagrangian tracer) has encountered a steady pressure for 

a specific time frame (set to 3 time steps for each setup). In addition, for the mesoscale setup, 

we calculated the difference between the primary shock wave and the final peak-pressure that 

tracers have sustained. For the shock recovery experimental setup we represented that amount 

as the enhancement of the primary shock wave (nominal pressure for each material) in percent. 

 

Figure 2. Details and complexity of the peak-pressures ramping in the sample plate after release 

(H ordinary chondrite mesoscale model at 39.22 GPa nominal pressure): a) peak-pressures 

plateaus frequencies attained by each material unit tracer, b) differences between the lowest and 

highest peak pressure plateaus (ΔP), c) examples of tracers recorded peak-pressures over time. 

The dashed lines represent the encountered peak pressure plateaus, bold numbers are the 

primary shock wave peak-pressures and underlined numbers are the final recorded peak-

pressures. The sum of the encountered peak-pressures in a) is the amount of peak pressure 

plateaus of a minimum three occurrences (0.005 μs in time lapse) in a tracer. The dashed red 

box indicates an area of interest. 

 

3. Results 
In Figure 2 are shown the results for a H ordinary chondrite mesoscale model at 39.22 GPa 

nominal pressure for which particles of iron (green) and troilite (blue) are delineated (Moreau 

et al. 2016). Details on the method to calculate the reflection index is shown in Figure 2c. In 

Figure 3 are shown the results for a sample plate hit with a 30 GPa nominal pressure. 

 

4. Discussion 
In figures 2 and 3 we see how complex are the reflections inside the samples. In Figure 2 the 

troilite grains and olivine matrix are subject to large amount of reflections. These reflections 

are due to the reflected shock wave from nearby iron grains or troilite grains. These reflections 

show large differences in the primary shock wave pressures and the peak-pressures and it is due 
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to the impedance contrasts (Hirose and Lonngren, 1985; Kinslow and Cable, 1970) between 

iron grains and olivine that enhance the pressure that is reflected. In Figure 3 the enhancement 

of the pressure inside the sample plate (from <10% to >100% of enhancement on certain zones) 

is due to complex reflections and impedance contrast at the boundaries between the sample and 

the steel case (iron). In Figure 4 we see a snapshot of the shock wave traversing the sample in 

the shock recovery experimental setup that shows the strong reflection from the bottom 

boundary. Later on, a final reflection will come from the top boundary when the reflection of 

the bottom boundary has travelled the whole sample, explaining the higher enhancement in the 

top part of the sample. 

 

Figure 3. Details and complexity of the peak-pressures ramping in the olivine sample (30 GPa 

nominal pressure): a) peak-pressures plateaus frequencies attained by each material unit tracer, 

b) enhancement of the nominal pressure (for both olivine and iron). The sample is delineated 

by the green line. 
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Figure 4. Snapshot of the shock recovery experimental setup at 30 GPa of nominal pressure in 

the sample plate. It shows materials, pressures and temperatures. The red arrow show the 

reflected shock wave at the boundary between the steel case (iron, grey) and the sample (olivine, 

yellow). A faint reflection can be seen from the top left corner of the sample. 

 

5. Conclusions 
We showed that shock wave interactions within an heterogeneous medium are strong and lead 

to high enhancement of a primary shock wave pressure to a final peak-pressure in most of the 

cases. We also proved these interactions to be of the same nature in both the mesoscale and the 

shock recovery experimental setup for which strong reflections from boundaries can enhance 

the primary shock wave to a final peak-pressure. In both setup, the material that enhanced the 

pressure in olivine or troilite was iron. 
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Pyhäsalmi mine, Pyhäjärvi, Finland, is known to have induced seismicity due ore extraction for past decades. In  

2002, when Pyhäsalmi mine was expanding operations under the old mine, a microseismic network was installed 

around deep ore body. The system consist over 20 geophones that are mainly around the excavation site. Since the 

installation, over 150000 events have been observed. Seismic observations are one of the quickest ways to map 

mines state-of-health. However the event localization of the microseismic monitoring system is not ideal as 

average of 20 m accuracy can be achieved at central part of the deep ore body at best. We have applied double-

difference technique successfully on microseismic data in order to enhance the accuracy of event positioning. 
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1. General 

It is known for centuries that mining causes increased seismicity in vicinity of the mining area 

(Guha, 2000; Caw, 1956). Although seismicity within mines is related to the mining operation 

it is not easy task to forecast origin time or hypocentre of seismic event as it is a complex 

equation of geology, mining method as well production speed. The extraction of ore and host 

rock in mine environment causes pressure distribution to change within rock. At weak zones, 

like cracks or existing faults, the rock cannot handle increased pressure and fails, which can 

lead to hazardous accidents within a mine (Brady, 2004). Therefore it is necessary to monitor 

seismic phenomena within mines (Guha, 2000). One major task is to track hypocentre of the 

microseismic event in the mines. The difficulty of localization of microseismic event is that in 

order to obtain hypocentre and origin time you need to know the seismic velocity structure of 

the mine. Usually this is not the case and it is necessary to use assumptions to descript the 

seismic velocity within study area. This leads only to approximate solution for hypocentre and 

origin time. In this study we present initial results of applying double-difference algorithm on 

microseismic data of Pyhäsalmi copper mine. Our aim is to study how well double-difference 

relocating algorithm enhances seismic event positioning. Results are compared the knowledge 

of mining in Pyhäsalmi mine. 

 

2. Microseismic localization 

Microseismic event localization is based on observing seismic waves originated from event 

with geophones that are connected to the main server of the microseismic system. By detecting 

and picking P- and S-waves (body waves) from every station it is possible to calculate events 

hypocentre and origin time using assumption of seismic velocity structure of the study area. 

However this is the main error source for event localization because it is difficult to assess what 

is the real seismic velocity structure without active measurements. Furthermore when mining 

operation continues it changes seismic velocity structure constantly. Therefore it is common to 

use either homogenous or very simple seismic velocity models for the mines. Third option is to 
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use station specific seismic velocity. All of the methods need to define with a-priori knowledge 

like extensometer information and are unique for individual mines. 

 

3. Microseismic data in Pyhäsalmi mine 

Microseismic event data from the Pyhäsalmi mine has been measured since 2002, when the 

microseismic monitoring network was installed to the mine. The networks main target is to 

locate frequently occurring microseismic events for monitoring changes in rock mass and for 

safety of mining operations. The Pyhäsalmi mines microseismic monitoring system hardware 

was acquired from Integrated Seismic System International (ISSI) Company and the software 

was provided by the Institute of Mine Seismology (IMS). Most of the geophones are one 

component sensors (vertical), but few 3-component geophones are also installed in key 

locations of the mine. Geophones have been placed around the Pyhäsalmi deep ore body. The 

microseismic network is automated by triggering option and system quickly notifies 

approximate location and magnitude of the event. The microseismic networks event 

localization accuracy has been determinated by the Pyhäsalmi Mining Ltd and also by Pyy 

(2007). According to Pyy, the best accuracy of seismic event location corresponds to upper and 

central part of the deep ore body and the poorer location accuracy is for events outside the 

microseismic system and in the bottom part of the mine within the production area. The average 

event location accuracy estimated by Pyy (2007) is 30 m. After this Pyhäsalmi mine Ltd has 

upgraded the microseismic monitoring system and thus the accuracy of the locating is improved 

as well. 

 

 
 

Figure 1. The microseismic events around deep ore body in Pyhäsalmi mine. Dots represent 

seismic events and triangles microseismic networks geophones. 
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4. Double-difference method and example results 

We apply double-difference algorithm to Pyhäsalmi mines microseismic data in order to 

relocate originally calculated event positions (Waldhauser & Ellsworth, 2000; Waldhauser, 

2011). Double-difference relocation method exploits the close pairs of events with common 

receiver. The fundamental equation of this iterative least-squares procedure relates the residual 

between the observed and predicted phase travel time difference for pairs of earthquakes 

observed at common stations to changes in the vector connecting their hypocenters through the 

partial derivatives of the travel times for each event with respect to the unknown. When the 

earthquake location problem is linearized using the double-difference equations, the common 

mode errors cancel, principally those related to the receiver-side structure (Waldhauser & 

Ellsworth, 2000). Because technique needs event pairs with common receiver the method has 

some limitations especially for isolated events. Due the structural changes in mining 

environment also time period between two events cannot be too long. As parameters we used 

maximum distance of 50 meter for event pair and minimum distance to the common station to 

be 100 meters. In Figure 2 is example of results of applying double-difference technique on two 

week microseismic data from January of year 2011. In the figure is presented a 50 meter slice 

in horizontal plane from depth of 1175 meter to 1225 meter from the ground surface. 

 

 
Figure 2. Results of applying double difference technique on two weeks microseismic data 

from Pyhäsalmi mine. Data is from January 2011. Dots represent original location of the 

Pyhäsalmi data and crosses relocated events. 

 

From the results it can be seen that relocated events are closer to the deep ore body than original 

event positioning and thus nearer to the contact zone between ore body and host rock. The 

average correction is around 10 meters. The relocation with double-difference did not work 

well at bottom part of the mine due too long distance between original event pairs for studied 
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data period. The best areas for the analysis in this example were mid and upper regions around 

deep ore body. 

 

5. Conclusion 
Double-difference technique algorithm was applied to microseismic data of microseismic 

monitoring network in Pyhäsalmi mine. The results showed that using double-difference 

technique it is possible relocate seismic sources with better accuracy. The method is most useful 

at regions with dense seismicity. 

 

References: 
Brady, B. H. G. & Brown, E. T., 2004. Rock mechanics for underground mining. Third edition. Kluwer 

Academic Publishers, Netherlands, 628 pp.  

Caw, J.M., 1956. The Kolar gold field, Mine and quarry engineering, 22, 258, and 306. 

Guha, S.K., 2000. Induced Earthquakes. Kluwer Academic Publishers, Dordrecht, Netherlands. pp. 314. 

Pyy, A., 2007. Tutkimus Pyhäsalmen kaivoksen mikroseismisen havaintoverkon paikannustarkkuudesta (A study 

for localization accuracy of Microseismic networks at Pyhäsalmi mine). Master’s thesis, Department of 

physics, University of Oulu. 

Waldhauser F. & Ellsworth, W.L., 2000. A Double-Difference Earthquake Location Algorithm: Method and 

Application to the Northern Hayward Fault, California. 

Waldhauser, F., 2001. hypoDD: A computer program to compute double-difference earthquake locations, USGS 

Open File Rep., 01-113. 

  



LITHOSPHERE 2016 Symposium, November 9-11, 2016, Espoo, Finland 103 

 

 

Effect of crustal scale shear zones to the  

crustal deformation during extension 
 

K. Nikkilä1 

 

1Geology and Mineralogy, Akademigatan 1, Åbo Akademi University 

E-mail: knikkila@abo.fi 

 

Many inherited structures and mechanical components affect to the post-collisional evolution in orogens. Here I 

present the effect of the crustal scale shear zones in a weak vs. a rigid crustal blocks during a post-collisional lateral 

spreading. The results are based on two analog modelings and discussion in a dissertation (Nikkilä et al., 2009; 

2015; Nikkilä, 2016). 
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1. Inherited features in an orogen 

Orogeny can increase volume and thickness of the orogenic crust (Cawood et al., 2009; 

Tetreault and Buiter, 2014). Accretionary and collisional orogens have been important in terms 

of the production of continental crust. In the formation of a continental crust, where large plates, 

and one or more microplates, or arcs, have been involved there tend to be complicated 

geological structures in the orogens. Hence, the orogen can be composed of heterogeneous 

crustal components which have different mechanical properties as well as inherited tectonic 

boundaries and large scale shear zones. 

When the orogeny leads to over-thickening of a crust, the crust may undergo syn- to post-

collisional extension, caused by the differences in gravitational potential energy between the 

thickened crust and its thinner surroundings (England and Thompson, 1986; Vanderhaeghe et 

al., 1999; Rey et al., 2001). The gravitational potential energy difference will cause crustal scale 

lateral spreading towards the thinner areas. In a thickened crust radioactive heating will initiate 

partial melting in the middle and lower crusts (England and Thompson, 1986). If there is enough 

partial melts in the crust, the spreading will accommodate in that layer. 

Post- and syncollisional middle to lower crustal spreading driven by gravitational 

instabilities (gravitational collapse) have been studied by conceptual and geodynamic models 

(e.g. Rey et al., 2001; Vanderhaeghe and Teyssier, 2001; Beaumont et al., 2001; Nikkilä et al., 

2009; 2015; Harris et al., 2012). The crustal architecture is outlined with two to three layers 

with different mechanical properties, and in the models, the inherited components and 

structures, such as mechanically heterogeneous crust or tectonic boundaries, are often lacking. 

Nevertheless, modeling the differences in the mechanical properties is more common in 

geodynamic models than modeling the reactivation of pre-existing large-scale shear zones.  

 

2. Reactivation of the shear zones in an extension 

In literature it has often been concluded that the pre-existing structures such as faults and shear 

zones have an effect in the style of deformation during extension (and in collision) (e.g. 

Fuegenschuh et al., 1997; Whitney et al. 2004; Corti et al., 2005; Jamieson and Beaumont, 

2011; Tetreault and Buiter, 2014). 

In geodynamic models by e.g. Koyi and Skelton (2001) and Rey et al (2009) the 

reactivation of the pre-existing shear zones have been modeled in extensional regime, however, 

in the models the shear zones are located mainly in the upper crust. Nikkilä et al (2015) studied 

the reactivation of the tectonic boundaries and crustal scale shear zone in a mechanically 

heterogeneous crust during post-collisional extension. Here I present and compare the results 
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of two sets of analog modeling experiments, thermomechanical (Nikkilä et al., 2009) and 

centrifuge (Nikkilä et al., 2015), which simulated the lateral spreading of a thick crust after 

formation of the partial molten crustal layer. I have concentrated on the formation and the 

deformation of the large scale shear zones in the lateral spreading of a thick crust.  

 

3. Effect of the pre-existing crustal scale shear zones 

The results indicate that in a thick, three-layer crust, with a weak middle crustal layer: 

 crustal scale shear zones do not develop;  

 the pre-existing tectonic boundaries and the crustal scale shear zones will increase the 

extension rate; 

 deeper  sequences of the crust will exhume in the presence of the shear zones; 

 in a rigid crust many minor core complexes will develop if the crustal scale pre-existing 

shear zones are not present; 

 in a weak crust, without the crustal scale shear zones, the core complexes extend in a 

wider area but less deep sequences are uplifted, in comparison to a weak crust with shear 

zones.   

The results suggest that studying the crustal evolution of post-collisional lateral 

spreading/extension, the inherited weakness zones are important to take account. The end 

results and duration may vary depending on the existence and/or lack of the tectonic boundaries 

and the crustal scale shear zones. Even thought the results are highly applicable in the post-

collisional lateral spreading of a thick, three-layer crust, the results also suggest that these 

features need to take account also in any extensional environment.  
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In this study, we describe the general lithological characteristics of the Kumpula Campus drill hole. The main 

purpose of the drill hole will be undergraduate education in geological logging, petrophysics, and borehole 

geophysics. The purpose of this study is to perform a detailed logging of the core, identify rock types, and find out 

how the drill core correlates with the bedrock outcrops of the area. Detailed thin section studies have not been 

performed yet, but are currently being planned. 
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1. Introduction 

A 370 m deep drill hole with continuous coring was drilled in the southern part of the Kumpula 

campus of University of Helsinki in late 2015 (Kukkonen et al., this volume; Figure 1). In 

addition to the present study, two other ongoing MSc thesis projects are discussed in posters of 

the Lithosphere 2016 symposium (Räisänen et al., this volume; Valtonen et al., this volume). 

This study aims to perform a detailed logging of the drill core using the newly built 

logging facilities at the Department of Geosciences and Geography. In addition, rock types will 

be identified and inspected in detail with a petrographic microscope. The results and the rock 

types will be compared with the local geology of the area. 

 

 
 

Figure 1. Location of the drill site and direction of the drilling. 

 

2. Geological setting 

According to the modern view, the bedrock of southern Finland was formed mainly during the 

Svecofennian orogeny at 1.9–1.8 Ga ago. The oldest rocks of the study area are the highly 

metamorphosed ~1.9 Ga hornblende gneisses and mica schists. These rocks are crosscut by 

only slightly younger (~1.88–1.87 Ga) tonalites and ~1.8 Ga late-orogenic granites that were 
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formed by partial melting of the Proterozoic metasedimentary rocks in the middle crust (e.g., 

Nurmi and Haapala 1986, Lahtinen 1994).  

 

 
Figure 2. Geology of the Kumpula area with the location of the drill hole (after Laitala, 1991). 

 

The geology of the Kumpula Campus area is typical to southern Finland (Figure 2). The 

Precambrian rocks of the area steadily dip south at approximately 80° angle. The hole was 

drilled into the hornblende gneiss. There are six major outcrops close to the hole in Kumpula 

and in these the rock types are gneiss, hornblende gneiss, granite and tonalite (Laitala 1991).  

 

3. Current situation of the project and future 
Most of the core has now been logged in detail and thin section samples are being selected. 

Preliminary mapping in the nearby areas has also been performed. Example of the variation of 

the rock type in the drill core is shown for the first 100 meters in Table 1. We have already 

discovered from the drill hole that the rock type changes a lot (as seen in these borehole images) 

between (hornblende)gneiss, granites, granite gneiss and migmatites (vein gneiss) (Table 1.). 

We also encountered very dark fine-grained veins, which are probably amphibolite. In some 

parts, there are lots of chlorite, which has probably formed by hydrothermal processes.  
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Table 1. Lithology for the first 100m of the Kumpula drill hole. 

 

Begin, 

m 
End, m Rock type   

0 0.20 overburden   

0.20 7.75 hornblende gneiss   

7.75 14.00 granite gneiss   

14.00 15.13 granite gneiss   

15.13 17.75 gneiss   

17.75 23.08 hornblende gneiss   

23.08 25.24 granite gneiss   

25.24 28.79 hornblende gneiss   

28.79 30.16 granite gneiss   

30.16 33.00 chlorite gneiss   

33.00 34.70 granite gneiss   

34.70 35.52 chlorite   

35.52 47.66 hornblende gneiss   

47.66 50.82 granite   

50.82 53.82 hornblende gneiss   

53.82 56.30 granite   

56.30 64.52 hornblende gneiss   

64.52 68.80 granite migmatite   

68.80 79.00 migmatite   

79.00 81.36 granite   

81.36 82.71 hornblende gneiss   

82.71 83.43 granite   

83.43 84.49 hornblende gneiss   

84.49 86.97 granite   

86.97 93.71 hornblende gneiss   

93.71 100.00 granite gneiss 
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Geothermal energy has a great potential and nowadays possible to build a geothermal plant in crystalline rock, and 

areas away from high heat flow. Permeability of the rock must be enhanced for feasible fluid flow through hot 

subsurface at depths as deep as 7 kilometres. Analytical and numerical models have been developed to estimate 

fluid flow and heat transfer at this depth. Numerical modelling is done with Finite Element Analysis tool COMSOL 

Multiphysics. 
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1. Introduction 

New technologies make utilization of geothermal energy possible at areas with low heat flow 

and permeabilities. Building a geothermal plant in crystalline rock is much more demanding: it 

requires drilling deeper in order to achieve feasible temperatures and overcoming difficulties 

caused by pressure. The concept of Enhanced Geothermal System (EGS) is similar to 

hydrothermal geothermal plants: drill holes for injection and production are drilled to the 

desired depth and water is circulated through the reservoir, as illustrated in Figure 1. During 

circulation water is heated up to the temperature of the reservoir and hot water is then pumped 

up and used for heating. The difference between EGS and conventional hydrothermal plants is 

that in EGS existing fractures must be engineered to increase permeability to feasible levels. 

 

Figure 1. Conceptual drawing of an EGS: two wells from the surface are drilled to the depth 

and rock permeability is stimulated to be able to circulate water from one well to another. 
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2. Physical background 

For water to heat up sufficiently it must be circulated in temperatures as high as possible. Heat 

transfer mechanisms are advection with the fluid flow and conduction in the “recharge area” or 

the rock. In Southern Finland, where geothermal gradient is around 16K/km, achieving 

temperature of over 100°C requires drilling to as deep as 7 km. At such depth pressure closes 

fractures and therefore decreases permeability, the crucial parameter for fluid flow. 

Permeability is a complex parameter that can be considered spatially correlated and 

lognormally distributed. This means that during stimulation permeability becomes increasingly 

channelized. Such permeability distribution can be modelled and applied to the fluid flow model 

in order to achieve channelized flow pattern. An example of permeability pattern is presented 

in Figure 2. 

Figure 2: Example of permeability distribution. 

 

 

3. The models 

Analytical model used in the study include heat and fluid transport models by Rodemann 

(1979). This model an idealized model for heat transport with fluid flow in single fracture. 

Numerical model is built with COMSOL Multiphysics finite element analysis software. The 

permeability distribution is to be implemented in the numerical model so the effect of 

heterogenous permeability can be studied. 

Analytical model is used to order to verify the numerical results. Preliminary results are 

similar for both models. 
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Figure 4: Temperature front after 15 years of cold water input at steady rate. Similar results of 

analytical model (left) and numerical model (right). 
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Superconducting gravimeters (SG) are the most sensitive relative gravimeters and hence are very well suited for 

studying geodynamical phenomena of various time scales. Finnish Geospatial Research Institute, (FGI, former 

Finnish Geodetic Institute) has operated an SG continuously since 1994 at the Metsähovi Geodetic Research 

Station. The instrument has been used to study e.g., solid earth tides, crustal loading due to ocean tides and non-

tidal mass changes in the Baltic Sea and atmosphere, as well as seismic normal modes of the Earth. In 2014 FGI 

received a new SG with even lower noise level at sub-seismic periods. With the new instrument we attempt to 

detect the translational motion of the solid inner core i.e., the Slichter mode. Here we present the current research 

and status of the FGI’s SG’s.   
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1. Introduction 

FGI’s Metsähovi Geodetic Research Station is a global geodetic “Core Station” and is equipped 

with all space geodetic techniques: Satellite Laser Ranging (SLR), Global Navigation Satellite 

Systems (GNSS), geodetic Very Long Baseline Interferometry (VLBI) and a DORIS (Doppler 

Orbitography and Radiopositioning Integrated by Satellite) beacon. In addition there is a 

dedicated gravity laboratory equipped with two superconducting gravimeters and an absolute 

gravimeter for geodynamical research. SG together with GNSS is crucial for studying loading 

effects which affect also observations made with the other instruments. Loading is mainly 

caused by the mass changes in the Gulf of Finland and atmosphere. Studies have shown that 1 

meter sea level rise in the Gulf of Finland weighs Southern Finland down 11mm (e.g., Virtanen 

& Mäkinen 2003, Virtanen 2006, Nordman et al. 2015). Observations made with the SG have 

been used also to study the free oscillations of the Earth (Figure 2.) (Virtanen 2006). Recently 

we have studied the effect of local hydrology on gravity (Mäkinen et al. 2014).  

 

2. Superconducting gravimeters of FGI 

A superconducting gravimeter is a relative gravity instrument based on the levitation of a 

superconducting sphere in a stable magnetic field created by a current in superconducting coils 

(e.g., Goodkind, 1999). An SG can detect periodical changes in gravity as small as 10-11ms-2 

(nGal, 1 microgal = 1 μGal = 10mm s-2, 1 nanogal = 1nGal = 0.01nm s-2). For a single event, 

the detection threshold is higher, conservatively about 10-9 ms-2. Due to its high sensitivity and 

low drift rate, the SG is very good for the study of geodynamical phenomena through their 

gravity signatures (Hinderer and Crossley, 2000). Currently there is approximately 35 SG’s 

operated globally. 

Superconducting gravimeter GWR T020 operated at the Metsähovi Geodetic Research 

Station continuously from August 1994 till September 2016 – second longest continuous SG 

time series in the World. In 2014 a new modern dual sensor OSG-073 SG was installed in 

Metsähovi to the same gravity laboratory as T020 (Figure 1.). During 2016 the OSG-073 went 

through several improvements and is now divided into two separate SG’s: a portable SG iGrav-

013 and stationary OSG-022. The former offers portability and very low drift and the latter is 

one of the world’s most sensitive instruments in the sub-seismic bands (<1mHz). Metsähovi 
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T020 was part of the Global Geodynamics Project (since 2015 IGETS - "International 

Geodynamics and Earth Tide Service") which was an international research effort to combine 

and gather the data from all SG’s in the World. The scientific objectives of the GGP were e.g., 

normal modes, mantle rheology, tides, solid earth-oceans-atmosphere interactions, hydrology 

and Earth rotation (e.g., Hinderer 2004). The iGrav-013 and OSG-022 will continue in the 

IGETS service. All gravity data from participating SG’s is freely available through the IGETS 

service (http://isdc.gfz-potsdam.de/igets-data-base). 

 

 
 

Figure 1. Superconducting gravimeters at Metsähovi. The old T020 on the left and the new 

OSG-073 on the right. 

 

3. Geodynamical Research 

SG’s have proven to be very valuable in the geodynamical research. It can measure effects with 

varying periods from seconds to years. Largest signal in the time varying gravity is the solid 

earth tides with amplitudes of several hundreds of nm/s2 in periods from hours up to 18.6 years. 

Tidal analyses are used to obtain information about elastic properties of the Earth and to study 

and validate ocean tide models. Because of the low drift and high sensitivity, SG’s have brought 

new insight also to other long period phenomena such as Free Core Nutation (FCN), Chandler 

Wobble (CW) and nonlinear ocean tides (e.g. Virtanen 2006).  

SG together with GNSS gives indispensable information on the crustal loading at 

Metsähovi. In addition to solid earth tides and loading caused by ocean tides, Metsähovi has 

vertical deformations of over a cm due to changes in the mass of atmosphere and the Baltic Sea. 

It is important to correct for these deformations on the other geodetic measurements. With SG 

we can also monitor microseisms with strongest spectral peaks at around 12 and 6 seconds 

created by storm surges in the northern Atlantic (Virtanen 1998). This microseism is causing 

noise in other gravity measurements (absolute and relative). Depending on the frequency of the 

microseism we can distinguish the source area for the microseism e.g., Norvegian coast or 

northern Atlantic (Virtanen 1998). 

SG’s have also proven to be very good instrument for studying the inner structure of the 

Earth from the normal mode spectrum of the Earth. SG’s have lower noise than seismometers 

at sub-seismic frequencies (<1mHz) hence providing a better tool for observing the gravest 

normal modes of the Earth (Figure 2.)(Rosat 2004). By studying the frequencies of these normal 

modes we can test the suitability of different Earth models such as 1066a, PREM or CORE11. 

With the new very low noise instrument OSG-022 together with similar instruments in France 

and Germany we aim to detect the translational oscillation of the solid inner core i.e., Slicther 

http://isdc.gfz-potsdam.de/igets-data-base
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mode (Slichter 1961, Rosat 2011). By determining the frequency of this mode we could give 

an estimate on the density contrast at the inner core boundary (ICB) as well as give an estimation 

on the viscosity of the fluid at the ICB.  

To study these different geophysical signals we need to first correct the gravity signal 

for other known effects. Hence we are currently developing a more sophisticated 

hydrogeological model of Metsähovi area to study and model the gravitational effect of the 

local hydrology on the observed SG signal. The attraction of the local hydrology is the biggest 

unclear signal in the gravity time series with peak-to-peak of several μGal’s. The hydrological 

signal has a distinct seasonal period but also shows periods within few hours due to strong 

precipitation and complex runoff. In addition to a basic meteorological station with temperature, 

humidity, pressure and wind sensors, we have also installed a comprehensive hydrological 

sensor network to Metsähovi: with 3 deep groundwater boreholes in the bedrock; 11 boreholes 

on the soil above the bedrock; soil moisture sensors; snow height and water equivalence 

sensors; rain gauge and two global radiation sensors. With the hydrological observations we 

can model the evapotranspiration and runoff of the water at Metsähovi. By carefully correcting 

the gravity time series for the hydrological effect we are able to study tidal signals as well as 

the normal modes with a better accuracy (Mäkinen et al. 2014).  

Due to small linear drift of the SG it is not directly compatible for postglacial rebound 

studies. However, the absolute gravity measurements that are used for PGR research could 

benefit from the high resolution time varying gravity signal for correcting e.g., local hydrology 

(e.g., Ekman&Mäkinen 1996, Mäkinen et al. 2005, Virtanen et al. 2014).  

 

 

 
 

Figure 2. Earth’s normal mode spectrum observed with the SG T020 after the Tohoku M9.0 

earthquake on 11.3.2011. The gravest spherical and toroidal normal modes are clearly visible. 

Modes are splitted to several overtones due to the rotation and ellipticity of the Earth. 
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3. Conclusions and future work 

The superconducting gravimeter of the FGI has contributed on several geophysical studies. The 

studied phenomena range from 18.6 year solid earth tide to seismic normal modes and 

microseism due to high swells on the Atlantic with periods of only 6 seconds. 

 With the new low noise OSG-022 and by utilising improved models for the local 

hydrology we will search for the Slichter mode and improve the measurements of the gravest 

normal modes. In addition the SG’s will provide important observations on the crustal loading 

at Metsähovi that cause error and biases in the space geodetic observations.  
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The Kumpula Campus Drill Hole Project provides educational environment and data for future drill hole related 

courses and research in geology and geophysics. Current geological studies of the drill hole concern petrology, 

fracture mapping and geochemistry. This study is about geochemical examination of the Kumpula campus drill 

core and outcrops and also a comparison between a PXRF-analyzer and a WD-XRF-analyzer. The comparison 

leads to usefulness evaluation of the PXRF-analyzer.   

 

Keywords: geochemistry, XRF, Helsinki, Svecofennian 

 

1. Introduction 

The diamond core drilling of the Kumpula campus drill hole was performed in December 2015 

by Suomen Malmi Oy. The drill hole is 370m deep, 76mm in diameter and in an angle of 70 

degrees NE. The core is 56mm in diameter (Kukkonen et al., this volume).  

The aim of the Kumpula Campus Drill Hole Project is to provide environment and data 

for research and undergraduate education in geosciences at the University of Helsinki. In 

addition to the department’s scientific equipment investments of 2015, the campus drill hole 

provides now a teaching and testing environment for the new geophysical and geological 

analyzers. The intention is to keep the drill hole open and available for scientific analyses as 

long as possible, hopefully for decades. (Kukkonen and Koivisto 2015). 

 

2. Geological setting 

The bedrock in Helsinki area has formed during the Svecofennian orogeny, in Paleoproterozoic 

era about 1.9 billion years ago. Originally sedimentary and volcanic rocks went through 

metamorphosis during the Svecofennian orogeny and formed for example mica-gneisses, acidic 

gneisses, amphibolites, hornblende-gneisses and migmatites. Later during the orogeny, igneous 

rocks like granite, granodiorite and tonalite formed own sections conforming the bedrock 

structures. (Laitala 1991, Kähkönen 1998). 

The Kumpula campus area is mainly hornblende-gneiss with granite veins that have 

formed later during the orogeny and migmatitic mixtures of these both. The amphibolites and 

hornblende-gneisses in Helsinki area show hardly any structures related to formation because 

of the relatively strong deformation during the metamorphosis. (Laitala 1991). 

 

3. XRF-analyses 

This study concentrates on the geochemical aspect of the drill core and outcrops. The aim is to 

do a comparison between the portable x-ray fluorescence spectrometer (PXRF): NITON 

Thermo Scientific XL3t GOLDD+ and wavelength dispersive x-ray fluorescence spectrometer 

(WD-XRF): PANalytical Axios mAX 4kW, which uses Omnian method. Comparing the 

geochemical results of the PXRF-analyzer with the results of the quantitative WD-XRF, the 

usefulness of the PXRF is discovered.  

The examining of the drill core started with taking XRF analyses with the portable device 

roughly on every rock unit. This led to about 150 analyses of the whole core. Based on visual 

features and different oxide percentages, four frequent rock types were defined. Along with 

hornblende-gneiss, the drill core includes granite, amphibolite and calc-silicate rock. Also about 
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15 sample pieces of hornblende-gneiss sections have been sawed, on every 30 meters. Those 

sample pieces are going to be analyzed with both of the XRF-analyzers and so the possible 

geochemical changes compared to depth are discovered. Thin section works are also going to 

be carried out for the sample pieces, one for each of the four rock types.  

Field work in the surroundings of the campus was done during the summer of 2016. About 

115 on-site PXRF analyses were taken on 11 selected outcrops and road cuttings and the 

intention is to compare those results with the results of the core. Also under examination is what 

kind of effects does the coarseness of the weathered surface or surface that is covered with 

lichen or traffic pollution, have on the results. 

 

4. First conclusions and future work 

When examining the results of the PXRF-analyzer, the primary interest is seeing if the ”total” 

–value actually represents the success of the analysis, since the value is highly dependent on 

the surface features (Figure 1). It will be interesting to see, if the relative percentages of the 

elements stay the same also in cases of low total caused by for example uneven surface. 

 

 
 

Figure 1. Average total values for different kinds of surfaces. 

 

The first comparison was done for TiO2 / FeO ratio compared to total with different kinds of 

symbols representing different surface conditions (Figure 2). The diagram shows how most of 

the TiO2/FeO –values stay roughly between 0 – 0,4. However clean surfaces and drill core give 

values that are a bit more scattered, where weathered/lichen covered surfaces and especially 

traffic polluted surfaces give quite constant ratios for TiO2/FeO. The diagram shows also how 

traffic polluted and weathered/lichen covered surfaces have total values that are noticeably 

more scattered than clean surfaces and drill core. Yet based on this diagram, it is still too early 

to make definite conclusions and further examination needs to be done.  
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Figure 2. TiO2 /FeO ratio compared to total in different kinds of surfaces. All of the values 

are measured with PXRF-analyzer. 

 

 

The final conclusions of the usefulness of the PXRF-analyzer are going to be important 

information for the future field courses and research in our department.  

Together with Kalle Penttilä’s petrographic work and Riikka Valtonen’s fracture 

mapping, we are going to have an insight of what lays beneath our campus and which might be 

interesting topics to still work with in the future.     
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Paleoproterozoic cratonic rocks and Mesoproterozoic potassic/ultrapotassic alkaline suites from the southern 

margin of Laurentia have Nd isotopic and elemental geochemical compositions that help to refine evolutionary 

traits of Laurentian lithosphere. Two Proterozoic crustal provinces examined (Mojavia, Mazatzal) (a) bear 

evidence for substantial involvement of pre-existing crust (old and more juvenile, respectively) in making these 

terranes, (b) reveal two distinct subcontinental lithospheric mantle domains attached to them, and (c) imply that 

the Mesoproterozoic Mountain Pass carbonatite (1375 Ma) was derived from enriched mantle lithosphere. 
 

Keywords: shonkinite, carbonatite, minette, granite, Sm-Nd isotopes, Laurentia, USA 

 

1. Introduction 

The Proterozoic North American lithosphere serves as a model for Precambrian crustal growth 

around an Archean nuclei. In southern Laurentia, Proterozoic crustal domains (Mojavia, 

Yavapai, Mazatzal) were accreted onto the pre-existing Archean lithosphere (Wyoming 

province) to form a secular growth pattern from the northwest to the southeast (e.g., Whitmeyer 

and Karlstrom, 2008). Three principal crustal provinces have been distinguished by Sm-Nd 

isotope geochemistry (Bennett and DePaolo, 1987), and they have been delineated on the basis 

of TDM model ages (DePaolo, 1981). In province 1 (Mojavia), TDM range from ≥ 2.5 to 2.0 Ga, 

in province 2 (Yavapai) from 2.0 to 1.8 Ga, and in province 3 (Mazatzal) from 1.8 to 1.7 Ga 

(Bennett and DePaolo, 1987; Rämö and Calzia, 1998). We have compiled a comprehensive data 

set based on whole-rock Sm-Nd isotope compositions (published and unpublished) of cratonic 

rocks from Mojavia and Mazatzal and present some new ideas regarding the time-integrated 

evolution of these two Precambrian terranes. We elaborate on the significance of two 

Mesoproterozoic potassic/ultrapotassic suites in Mojavia (the 1410-1375 Ma Mountain Pass 

shonkinite and carbonatite) and Mazatzal (the 1460 Ma Burro Mountains minette and potassic 

granite) and discuss their bearing to the assembly and subsequent evolution of southern 

Laurentian lithosphere. 

 

2. Sm-Nd isotope geochemistry of Mojavia and Mazatzal 

The crustal structure of southern Laurentia (Fig. 1A) displays an amalgamate of crustal domains 

assembled in collisional events at 1.75-1.70 Ga (Ivanpah orogeny) and 1.65-1.63 Ga (Mazatzal 

orogeny) (Whitmeyer and Karlstrom, 2008). South of the Archean Wyoming province, these 

Proterozoic crustal domains show a consistent pattern of initial Nd isotopic compositions 

becoming more radiogenic from Mojavia through Yavapai to Mazatzal (Bennett and DePaolo, 

1987; Rämö and Calzia, 1998). Figure 2 shows the Nd isotopic composition of cratonic rocks 

from Mazatzal in SW New Mexico and SE Arizona (Nd at 1460 Ma) and Mojavia in SE 

California (Nd at 1400 Ma). For all granitoids and metamorphic rocks, the Mojavia samples 

have more negative Nd (-9 to -3) than those from Mazatzal (Nd -1 to +4). 
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Figure 1. (A) Division of 

Proterozoic crustal domains south 

of the Archean Wyoming province 

in southern Laurentia. Black 

denotes areas of exposed cratonic 

(Precambrian) rocks. Star marks 

location of the Mountain Pass 

alkaline suite (1410-Ma shonkinite, 

syenite, and granite; 1375-Ma 

carbonatite). Llano Front marks the 

northwestern margin of the 

Grenville orogeny at 30o-34o N 

latitude. Heavy dashed line denotes 

a Proterozoic transcurrent zone 

along the southern margin of 

Laurentia, extending from west 

Texas to southeastern California 

(Bickford et al., 2000). (B) 

Geological map of the southern 

Death Valley region, Mojavia 

province, southeastern California 

showing the distribution of 

Proterozoic and Phanerozoic 

lithologic units exposed in a grossly 

extended terrain. Inset shows 

location of the southern Death 

Valley region relative to southern 

California (modified from Rämö 

and Calzia, 1998). (C) General 

geological map of the Burro 

Mountains, Mazatzal province, 

southwestern New Mexico 

(modified from Rämö et al., 2003). 

(D) Geological map of the 

northwestern part of the Burro 

Mountains. This terrane is 

dominated by two Mesoproterozoic 

granite plutons, Redrock (1220 Ma; 

associated with massif-type 

anorthosite) in the west and Jack 

Creek (1460 Ma; intermingled 

potassic granite and minette) in the 

east, with a sliver of metamorphic 

Mazazal crust in between (modified 

from Rämö et al., 2003). 
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Figure 2. A/CNK (molar Al2O3/(CaO+Na2O+K2O)) vs. Ndi diagram showing the composition of 

cratonic samples from Mojavia and Mazatzal and associated potassic/ultrapotassic igneous suites. Initial 

values calculated at 1400 Ma for Mojavia and at 1460 Ma for Mazatzal. Data from Rämö and Calzia 

(1998), Amato et al. (2008), McLemore et al. (2012), and the authors (unpublished). 

 

3. Potassic/ultrapotassic suites 

The two potassic/ultrapotassic suites examined from Mojavia and Mazatzal were emplaced at 

~1400 Ma and ~1460 Ma, respectively, and comprise alkaline silicate rocks (shonkinite, 

syenite, minette, alkali granite) and carbonatite (Mojavia). LREE values of these rocks are very 

high (up to 300 ppm Nd in the silicate rocks and up to 4600 ppm Nd in carbonatite). The initial 

Nd isotope composition of these samples (Fig. 2) falls into two categories: shonkinites, syenites, 

and carbonatite from Mountain Pass have Ndi of -4 to -2; minettes and granites from the Burro 

Mountains have Ndi of +2 and +3, save for one minette sample with an Ndi of +4. 
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4. Lithospheric evolution 

Our new compilation of Nd isotope compositions of cratonic rocks from Mojavia and Mazatzal 

provinces show some probably important patterns. Both suites show clear patterns of increasing 

aluminium saturation index with decreasing Nd values (Fig. 2). This points to incorporation of 

pre-existing crustal material in the form of sedimentary detritus from varying provenances into 

the nascent Mojavia and Mazatzal crustal provinces (cf. Rämö and Calzia, 1998). Obviously, 

these provenances were quite different age-wise (Archean vs. Paleoproterozoic). 

The Mountain Pass carbonatite is exceptional in having clearly negative Nd values (cf. 

Bell and Simonetti, 2010). Moreover, the initial Nd isotope compositions of the alkaline silicate 

rocks and the Mountain Pass carbonatite are all negative and almost identical, and a common 

source for them in the sublithospheric mantle is viable. These rocks thus probably register an 

ancient (Paleoproterozoic) subcontinental mantle domain that was formed while the Mojavia 

province was assembled. The Burro Mountains minettes, on the other hand, probably tapped a 

more juvenile, depleted mantle lithosphere attached to the Mazatzal crustal province. 

 

5. Concluding remarks 

The Nd isotope composition of cratonic rocks and Mesoproterozoic alkaline suites from the 

Mojavia and Mazatzal provinces sheds new light on the assembly of southern Laurentia in terms 

of crustal processes (e.g., interplay of different provenances) and crust-mantle dynamics. The 

Mesoproterozoic potassic/ultrapotassic alkaline suites of Mountain Pass (southeastern 

California) and Burro Mountains (southwestern New Mexico) provide a useful proxy in pursuit 

of the age and time-integrated Sm-Nd isotope evolution of the subcontinental lithospheric 

mantle in the two areas examined. 
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Abstract 

The number of good quality paleomagnetic data of the Mesoproterozoic supercontinent 

Nuna (e.g. Columbia, Hudsonland) has increased in recent years enabling more reliable global 

continental reconstructions (e.g Hoffman 1997; Evans and Mitchell 2011; Zhang et al. 2012; 

Pisarevsky et al. 2014). Supercontinent Nuna included Baltica, Laurentia, Siberia, proto-

Australia and Antarctica, Amazonia and West Africa, Congo-São Francisco, North China, 

Kalahari and India cratons. Baltica and Laurentia are thought to represent two of the most 

important building blocks of this supercontinent in a single geologically valid NENA (North 

Europe- North America) juxtaposition between ca. 1.75-1.27 Ga forming the core of Nuna with 

Siberia (e.g. Gower et al. 1990; Evans and Mitchell 2011).  

Recent high quality, precisely dated Mesoproterozoic paleomagnetic poles of Baltica 

support the NENA connection. These include the pole from Åland (1575.9 ± 3.0 Ma; U-Pb) 

diabase dykes (Salminen et al. 2015) and coeval pole from Satakunta diabase dykes (Salminen 

et al. 2014) in Finland; a pole for the Mesoproterozoic Satakunta sandstones in Finland (Klein 

et al. 2014); and poles for Lake Ladoga basalts and intrusives (1459 ± 3, 1457 ± 2 Ma; U-Pb) 

in Russia (Salminen and Pesonen 2007; Lubnina et al. 2010).  

One striking feature of the 1.576 Ga high quality paleomagnetic data for Åland and 

Satakunta is the asymmetry of polarity, i.e. the mean directions of normal (N) and reversed (R) 

polarities are not antiparallel at 95% confidence level and do not pass the reversal test 

(McFadden and McElhinny 1990). One possible reason for such an asymmetry could be an 

unusual behaviour of the geomagnetic field at the Mesoproterozoic, which would hamper the 

paleomagnetic reconstructions. Antipodality of N and R directions is expected in the case where 

the geomagnetic field is represented by the geocentric axial dipole (GAD), whereas steepening 

or shallowing of inclinations can result from the contamination of GAD by zonal multipolar 

fields. We used 26 global dual-polarity paleomagnetic results from PALEOMAGIA database 

(Veikkolainen et al. 2014a) to detect possible deviations from the GAD hypothesis (Hospers 

1954) applying the quantity called inclination asymmetry (Veikkolainen et al. 2014b). The 

asymmetry tests indicate that GAD is a relatively good fit at the Mesoproterozoic (1.7-1.4 Ga) 

and therefore zonal multipolar fields do not explain the observed asymmetry.  

One other possible reason for asymmetry is an unremoved secondary component, which 

could explain the asymmetry for Åland and Satakunta data. Additional support for component 

mixing comes from the secondary component distribution, which is streaked in part toward the 

N-polarity direction. A third reason can be a small but significant age difference between N and 

R magnetized dykes which could explain the asymmetry. However, the actual age span for the 

Mesoproterozoic dykes for Baltica awaits further precise age dating.  
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In addition to results from Åland, Satakunta and Lake Ladoga we present here new high 

quality Mesoproterozoic paleomagnetic and geochronological results from the Häme dykes 

(1642 ± 2 Ma, 1647 ± 14 Ma; U-Pb) in Finland that do not show asymmetry. These results also 

support the NENA connection placing Baltica on equatorial latitudes at 1.64 Ga.  
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We used teleseismic travel time tomography method to study the 3D velocity structure of the upper mantle beneath 

the POLENET/LAPNET passive seismic array in northern Finland. The mantle structures revealed differ 

significantly from the structures found earlier beneath the SVEKALAPKO array located in southern and central 

Finland and overlapping with the southernmost extent of POLENET/LAPNET array. 
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1. Introduction 

The passive seismic POLENET/LAPNET array recorded continuous seismic waveforms in 

northern Fennoscandia from May 2007 to September 2009 (Kozlovskaya et al., 2007) (Fig. 1). 

The experiment was a part of the Polar Year 2007-2008. The array was centred in northern 

Finland and extended to the surrounding area in Sweden, Norway and Russia. It consisted of 

58 seismic stations with the average distance between stations 70 km. 37 of the stations were 

temporary installations and 21 were permanent seismic stations of Finland, Sweden and 

Norway. All of the station sites except two temporary stations had broadband instruments 

deployed at least for a part of the recording period. The primary target of the experiment was 

to increase the knowledge of the structure of the crust and upper mantle beneath northern 

Fennoscandia and to estimate the depth of the lithosphere-asthenosphere boundary, if possible. 

The SVEKALAPKO array (Hjelt et al., 1996) can be considered the predecessor of the 

POLENET/LAPNET in southern and central Finland with a slight overlap in the study areas in 

the southern part of the POLENET/LAPNET study area (Fig. 1). The SVEKALAPKO array 

was operational 1998-1999. The array consisted of 55 broadband and 88 short period 

instruments with the average distance between stations 50 km. 

Together POLENET/LAPNET and SVEKALAPKO arrays cover Finland and partially 

the surrounding areas in Sweden, Norway and Russia with a relatively dense array of seismic 

recordings. 

 

2. Teleseismic traveltime tomography method 

In seismic tomography method, the 3D structure of the Earth is studied by estimating the travel 

times of seismic waves originating from distant. The method is analogous to the methods used 

for example in X-ray tomography. The method optimises relative travel times, the differences 

between observed and theoretical travel times, through a 3D velocity model beneath the selected 

study area.  

The method assumes that the seismic velocities outside the study volume follow a 

selected, typically 1D, reference model and that any lateral velocity perturbations are located 

inside the study volume. As a consequence, the method does not resolve the vertical velocity 

variation well but only the horizontal variations at the depths defined by the selected starting 

model. Despite this limitation, the method is widely used and well established in constraining 

the 3D structure within the lithosphere and the uppermost asthenosphere. 
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Both our study of POLENET/LAPNET data (Silvennoinen et al., 2016) and an earlier 

study of SVEKALAPKO data (Sandoval et al., 2004) used the same basic inversion code Telinv 

based on the original code of Evans and Achauer (1993), though the code has been modified 

and improved by multiple authors during the intervening decade (see Karousová (2013) for 

details). 

 

 

 
 

Figure 1. A map of the seismic stations of POLENET/LAPNET and SVEKALAPKO arrays. 

 

3. Results and conclusions 

The teleseismic P-wave traveltime tomography results of the SVEKALAPKO array (Fig. 1) 

beneath southern and central Finland (Sandoval et al., 2004) revealed a deep high-velocity 

cratonic root below the central Finland. This feature is the major characteristic of the model, 

for example, the main tectonic feature; the boundary between Archaean and Proterozoic 

terranes is not visible in the tomography results. 

On the contrary, the teleseismic tomography results of the POLENET/LAPNET study 

area in northern Finland (Fig. 1) revealed a very different mantle. The mantle is characterised 

by a slow velocity anomaly beneath central Finnish Lapland and higher velocities in the 

northeastern, southeastern and western corners (Silvennoinen et al., 2016). We interpreted the 

higher velocities in the corners to represent Archaean cratonic lithosphere similar to the one 

interpreted below southern and central Finland. 
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A 1:750 000 scale geological map of SE Fennoscandia (Fig. 1), which includes the Karelian craton, Belomorian 

mobile belt and SE Svecofennian orogen, was compiled in the Institute of Geology, KarRC, RAS (Kulikov et al., 

2016; Svetov et al., 2016). Its legend is based on the International Stratigraphic Scale. The geological structure of 

the territory consists of the geological units of three eons: the Archaean, the Proterozoic and the Phanerozoic. 

 

 
Figure 1. Geological Map of SE Fennoscandia (Kulikov et al., 2016; Svetov et al., 2016) 
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Figure 2. Geological Map of SE Fennoscandia (Kulikov et al., 2016; Svetov et al., 2016) 

 

In the Proterozoic eon, magmatism of varying intensity took place in three eras. In the 

Palaeoproterozoic, igneous complexes are recognized in all six periods, but the Sumian (2.5-

2.4 Ga) formation with layered mafic-ultramafic intrusions and associated volcanics, the 

Jatulian (2.3-2.1 Ga) trapp formation with volcanic and subvolcanic facies and the Ludicovian 

(2.1-1.92 Ga) formation with picritic-basaltic volcanism and gabbroic rock and peridotite 

intrusions are the most significant (Glushanin et al., 2011 and references therein). Alkaline-

ultramafic and carbonatitic intrusive units, as well as kimberlites, were formed in the 

Palaeoproterozoic.  

Palaeoproterozoic metamorphism in the Svecofennian (1.89–1.81 Ga) and Belomorian 

(1.94–1.85 Ga) provinces was quite intense.  

An anorthosite-rapakivi granite formation was common in the southeastern part of the 
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region in the Mesoproterozoic. Rifting events with a trapp formation in the eastern White Sea 

region (Baluev et al., 2012) and those with a kimberlite-lamproite formation in West Karelia 

took place in the Middle Riphean superperiod. The Palaeozoic is known as an amagmatic era, 

except for the Devonian, when events in the Kola alkaline-ultramafic LIP occurred in the 

northern part of the territory.   

The main methods used for the construction of a crustal evolution model are correlation 

of geological processes (Slabunov et al., 2006) and, if possible, palaeomagnetic data (Lubnina, 

Slabunov, 2011).  

The Fennoscandian Shield is split up into three fragments of the Palaeoarchean (3.5-3.2 

Ga) continental crust that presumably existed as one microcontinent (Hölttä P et al., 2014). 

About 3.1 Ga ago it broke up. 

Ca.3.05 Ga ago a new growth cycle of the continental crust began. During the 3.05-2.95 

Ga period the crust was forming by subduction and subsequent accretion to the largest old 

Vodlozero block (Svetov, 2005). Mantle-plume magmatism manifests itself in the central part 

of the block and within the surrounding ocean. The bulk of the Archaean continental crust of 

the Fennoscandian Shield was formed during the 2.95-2.82 Ga period. Fragments of island-arc 

volcanics, ophiolites and eclogites (Slabunov et al., 2006) have been encountered in the 

-type, island-

arc volcanics of the Keret greenstone belt (GB), metagraywacke (front-arc basin sediments) of 

the Chupa paragneiss belt, Salma eclogites were formed in the Belomorian province. They mark 

the subduction boundary of the lithospheric plates. The main continental crust-forming 

geodynamics is provided by subduction-accretion processes. These processes also dominated 

over the 2.78-2.72 Ga period, when island-arc volcanics, eclogites and suprasubduction 

ophiolites were also produced. It should be stressed that island-arc volcanics (Kichany GB) and 

granulites were derived in the suprasubduction zone in the Belomorian province simultaneously 

with the Neoarchaean eclogites formed in the subducting slab. Thus, a set of complexes that 

mark the subduction persists here, and a short continental subduction episode stands out.   

During the 2.71-2.58 Ga period collision and postcollision processes took place. The 

Belomorian province is the core of the collisional orogen, where nappe-fold tectonics, kyanite-

subfacies metamorphism, partial rock melting and granitic magmatism occurred. This process 

in the western Karelian Province seems to be reflected by alkali-enriched gabbro and diorite 

intrusions (Mikkola et al., 2016). 

This collisional even took place not only in the Fennoscandian Shield but also in Kaapvaal 

(2.7-2.67 Ga processes in the Limpopo complex), the Superior Province (2.68 Ga Minnesotan 

orogeny ). It was probably the final event upon the formation of the first Neoarchean 

Supercontinent (Slabunov & Lubnina, 2015). 

 

This is a contribution to RFBR Project 15-05-09288.  
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The ca. 1645 Ma Suomenniemi rapakivi granite complex in SE Finland mostly comprises metaluminous to 

peraluminous amphibole and biotite granites. Numerous bodies of peralkaline alkali-feldspar syenite are present 

in the SE part of the complex. Petrographic analysis and isotope geochemistry indicate that the alkali-feldspar 

syenites formed via fluid-induced brecciation, dequartzification and sodic alteration of the Suomenniemi granites. 

The metasomatism led up to complete replacement of the original granite mineralogy by oxidized, sodic 

assemblages, dominated by alkali feldspar and aegirine-augite. The process resembles fenitization of granitic rocks 

around carbonatite or ijolite intrusions. Whether the fluids originated from a hidden alkaline intrusion, or were 

related to the evolution of the subalkaline rapakivi magmas, is not known. 
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1. Introduction and description of the alkali-feldspar syenites 

The ca. 1645 Ma Suomenniemi complex is located at the northern margin of the Wiborg 

rapakivi batholith (Figure 1). The complex comprises metaluminous amphibole granites that 

grade to metaluminous or slightly peraluminous biotite granites. Minor topaz granite bodies are 

also found. NW-oriented quartz-feldspar porphyry (ca. 1635 Ma) and diabase dykes intrude the 

complex and the surrounding Svecofennian basement. Peralkaline alkali-feldspar syenites form 

a distinct group of rocks within the Suomenniemi complex. Their origin have been investigated 

via petrographic, geochemical and isotope geochemical analyses. 

The alkali-feldspar syenites are pink to deep purple, coarse-grained, NW-oriented dyke-

like bodies or small (<10 m in diameter) patches whose contacts with the granites are in many 

cases obscured by similar colour and texture. They are peralkaline rocks with high Na2O/K2O 

and Fe2O3/FeO ratios and corresponding sodic mineral assemblages, and can be divided into 

three groups by their dominant mineralogy and texture: 

Figure 12. Geological map of 

the Suomenniemi complex 

after Rämö and Mänttäri 

(2015). The alkali-feldspar 

syenites are divided into three 

distinct groups by their 

mineralogy (see text) and 

delineate NW-trending zones. 
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(1) Orthoclase perthite and sodic-calcic amphibole ± aegirine. Primary minerals are 

strained and fractured, and secondary amphibole and feldspar fill interstitial spaces. Perthite is 

usually highly turbid and replaced by albite to a variable degree. Oligoclase and quartz are rare. 

The change from this type is more or less gradual to type (2), below. 

(2) Mesoperthite and aegirine-augite ± sodic amphibole. Submillimeter mesoperthite 

grains form a granoblastic (polygonal) matrix between larger grains of perthite. Aegirine-augite 

forms inclusion-rich sheets or granular clusters. Alkali feldspar microtextures and possibly bulk 

compositions are variable. Swapped albite rims form between feldspar grains. 

(3) Albite and aegirine-augite. Albite is present as small grains that fill spaces between 

larger grains of albitic feldspar. Aegirine-augite is as in (2). 

Accessory minerals invariably include euhedral apatite and zircon, and subhedral to 

anhedral titanite and magnetite/hematite. Minor amounts of secondary quartz and epidote are 

common and andradite may replace aegirine-augite in (2). 

The alkali-feldspar syenites are indistinguishable from the Suomenniemi granites by 

their in situ zircon ages (ca. 1645 Ma; Rämö and Mänttäri 2015; Suikkanen et al. 2016) and 

δ18OVSMOW-values (ca. +8 ‰; Elliott et al. 2005; Suikkanen et al. 2016), as well as their εNd(t) 

values (ca. -1.5 at 1640 Ma; Rämö 1991; unpublished data by the authors). 

 

2. Discussion and conclusions  

These data imply that the alkali-feldspar syenites formed from the subalkaline granites via sodic 

metasomatism and associated dequartzification. The texture and mineralogy of the 

metasomatites were influenced by system temperatures and compositions, fluid-rock ratios, and 

the extent of brecciation and mobilization of the material. The zoned placement of the different 

types of alkali-feldspar syenites (Figure 1) implies spatial control on the strength of 

metasomatism. The most notable geochemical changes were decrease in SiO2, FeO, CaO, Sr, 

and F and increase in Na2O, Fe2O3, and Al2O3. K2O, Rb, and Ba decreased along with 

progressive albitization of potassic feldspar. Nd-isotopic data reveal that the metasomatizing 

fluids did not introduce measurable amounts of isotopically different Nd into the system. 

The alkali-feldspar syenites of the Suomenniemi complex greatly resemble fenitized 

granites around alkaline and carbonatite intrusions, such as those in Fen, Norway (Kresten and 

Morogan 1986). They probably formed by fault-controlled metasomatism similar to the vein 

fenites of Kresten (1988). Because no alkaline rocks (including peralkaline granites) or 

carbonatites have been found within the Finnish rapakivi granite terrain and the source of the 

metasomatizing fluids is obscure, these alkali-feldspar syenites may not be fenites in the strict 

sense. 
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A subaerial picrite lava series exposed at the Luenha River, Mozambique, shows a unique geochemical fingerprint 

within the 180 Ma Karoo large igneous province. The available chemical and Nd and Sr isotopic data indicate 

derivation of the Luenha picrites from a primitive mantle-like source, whereas previous studies have revealed a 

depleted mantle source for other Karoo picrites. Comparison between the different Karoo picrites and basalts 

suggests that the depleted mantle source was predominant within the Karoo triple rift, whereas the primitive 

mantle-like source identified for the Luenha picrites may well have been the main source of voluminous flood 

basalts in southern Africa. Involvement of two contrasting mantle reservoirs has significant implications for the 

origin of the Karoo LIP and its environmental influences. 
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1. Mantle sources of the Karoo large igneous province 

During the Mid-Jurassic breakup of Gondwana supercontinent, voluminous flood basalts and 

related mafic dyke swarms were emplaced in southern Africa and Dronning Maud Land, 

Antarctica (Fig. 1). The principal mantle sources of the geochemically diverse and widespread 

volcanism in the Karoo large igneous province (LIP) have been frequently debated during the 

past few decades (e.g. Ellam and Cox, 1989, 1991; Riley et al., 2005; Heinonen and Luttinen, 

2008; Wang et al., 2015). Crustal contamination has probably overprinted the primary 

characteristics of all but few Karoo flood basalt magmas, which has hampered identification of 

the mantle sources.  

 

 
 

Figure 1. Karoo large igneous province reconstructed at 180 Ma. The occurrences of flood 

basalts associated with the Karoo triple rift (black) and the remnants of an enclosing lava 

plateau (grey) and picrite localities are indicated (white stars –rift-related, grey star.– Luenha 

picrites). Modified after Jourdan et al. (2007), Ellam and Cox (1989, 1991), Duncan et al. 

(1990), Luttinen et al. (2010) and Heinonen and Luttinen (2008). 
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Karoo high-Mg (picritic) rock types are common in the Mwenezi-Tuli area (Fig. 1), but 

these picrites probably represent contaminated magmas (Ellam and Cox, 1991). On the other 

hand, rare examples of uncontaminated picrites from Antarctica (Vestfjella; Fig. 1) have 

revealed a mantle source that is isotopically indistinguishable from the depleted upper mantle 

(Heinonen et al., 2010; Heinonen and Kurz, 2015). Many of the different Karoo flood basalt 

types may have been derived from depleted mantle-sourced primary magmas by contamination 

with incompatible element-enriched crustal and lithospheric mantle materials (Ellam and Cox, 

1991). In fact, geochemical modelling has suggested that depleted mantle may be the principal 

mantle source of magmatism within the Karoo triple rift (Fig. 1; Luttinen et al., 2015; Heinonen 

et al., 2016). In this study, we report a suite of picritic lavas from the Luenha River, 

Mozambique (Fig. 1). We show the Luenha picrites to represent a new compositional type of 

Karoo magmatism and suggest they may be record a significant, previously unknown mantle 

reservoir of the Karoo LIP. 

 

 
Figure 2. ΔNb values vs. Sm/Yb ratios in the Luenha picrites (grey diamonds) and Karoo rift 

picrites (black diamonds). Compositional fields of Karoo flood basalt lavas and dykes in the 

Karoo triple rift and those of the enclosing lava plateau are indicated (see Fig. 1). Average 

compositions of normal MORB and OIB are shown for comparison. Possible depleted (DM), 

primitive (PM), and subcontinental lithospheric (SCLM) mantle sources and upper (UC) and 

lower crustal (LC) contaminants are shown for comparison. The compositional effect of 

decreasing amount of partial melting in the presence of residual garnet is illustrated (garnet 

fingerprint). Reference data from Salters and Stracke (2004), Jourdan et al. (2007), Smith et al. 

(2009), Sun and McDonough (1989), McDonough (1990), Wedepohl (1995), Luttinen and 

Siivola (1997), Ellam and Cox (1989, 1991), Duncan et al. (1990), Heinonen and Luttinen 

(2008). ΔNb values have been calculated according to Fitton et al. (1997). 
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2. Geochemistry of the Luenha picrites 

The Luenha picrites contain unaltered, euhedral high-Mg olivine (Fo86–Fo89) phenocrysts, and 

their whole-rock MgO contents (9.4–24.7 wt. %) are high even after taking into account the 

effect of olivine accumulation. Compared to the picrites previously described from the Karoo 

LIP (Ellam and Cox, 1989, 1991; Riley et al., 2005; Heinonen and Luttinen, 2008), the Luenha 

picrites show notably low TiO2 (0.3–1.0 wt. %) contents. The Luenha picrites are further 

distinguished from the other Karoo picrites by their nearly unfractionated heavy REE ratios 

(Sm/Yb ~1) and by their undepleted Nb contents relative to other high-field-strength elements, 

such as Zr and Y (Fig. 2). 

The enrichment or depletion of Nb relative to Zr and Y can be quantified using the so-

called ΔNb parameter (ΔNb = 1.74 + log [Nb/Y] – 1.92 log [Zr/Y]; Fitton et al. 1997): The 

Luenha picrites are typified by notably high, positive ΔNb (0.4–0.6), whereas the previously 

studied depleted mantle-sourced picrites and flood basalts in Antarctica and the Karoo rift zone 

have negative ΔNb (Fig. 2). It is petrologically important to notice that the high ΔNb values of 

the Luenha picrites are not readily explained by contamination of depleted mantle-derived 

magmas, and thus indicate a Nb-undepleted mantle source (cf. Fitton et al., 1997). Furthermore, 

ratios of highly incompatible elements indicate that the Luenha picrites include uncontaminated 

or very mildly contaminated types. The least-contaminated Luenha picrites show trace element 

and isotopic affinities to primitive mantle (87Sr/86Sr (180Ma) = 0.7041, εNd (180 Ma) = +0.1). The 

relatively more LREE-enriched samples exhibit chemical and isotopic indications of crustal 

contamination (e.g. 87Sr/86Sr (180Ma) up to 0.7076).  

 

2. Conclusions 

Overall, geochemical comparison indicates that the Luenha picrites represent a previously 

unknown high-Mg magma type in the Karoo LIP. They are typified by low-TiO2 and high-ΔNb 

compositions and primitive mantle-like incompatible element and isotopic ratios. 

Unfractionated heavy REE ratios (low Sm/Yb) suggest the primary melts were segregated from 

a garnet-free mantle source, which points to relatively low pressure conditions or notably high 

degree of partial melting, or both (Fig. 2). In contrast, previously reported Karoo picrites have 

relatively high TiO2, low Nb and relatively high Sm/Yb values. Based on these features and 

the isotopic ratios of the uncontaminated samples (εNd (180 Ma) up to  +8; Heinonen and Luttinen, 

2008; Heinonen et al., 2010), these picrites represent low degrees of melting of depleted mantle 

at relatively high pressure. 

Judging from geochemical similarities, for example low Sm/Yb and high Nb (Fig. 2), 

the Karoo plateau lavas and dykes may have originated from the same or similar mantle sources 

as the Luenha picrites. This correlation suggests that magmatism in the Karoo LIP was sourced 

by at least two different kinds of principal mantle reservoirs: A depleted mantle source has been 

associated with the rift zone (Luttinen et al., 2015; Heinonen et al., 2016), whereas the primitive 

mantle-like source of the Luenha picrites is a plausible source for the voluminous plateau flood 

basalts. Whether the primitive mantle-like source of the Luenha picrites was part of 

sublithospheric mantle or lithospheric mantle is currently unclear, although a sublithospheric 

source would be a thermodynamically more viable source for voluminous flood basalt magmas 

(e.g. Arndt and Christensen, 1992). Involvement of two contrasting mantle reservoirs has 

significant implications for the magma generation and emplacement processes and the 

environmental influences of Karoo LIP magmatism. 
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In this article we describe the Aijala tailings ponds’ potential to be a source of secondary raw minerals. The tailings 

pond was targeted as a study site because the mines, Aijala and Metsämonttu, from which the tailings are from, 

have been shut several decades ago, and therefore the tailings might contain significant amounts of minerals which 

could be utilised with the modern processes. The amount of Cu, Zn, Ag and Pb has been estimated within the 

tailings layers. Aijala tailings pond is one of the Finnish pilot areas of EU funded SMART GROUND project. 
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1. Smart ground project 

Raw material are becoming a more important for the EU economy. The recycling and recovery 

of these materials becomes more relevant as they become scarser and their prices raise. 

According to an estimation, there are in the EU area between 150 000 and 500 000 highly 

variable landfills, and they could contain a significant potential of secondary raw materials. 

However, there is no standardised inventory available of the secondary raw materials in these 

landfills, nor are the present reporting standards sufficient.  

The SMART GROUND project funded by the EU’s Horizon 2020 program intends to 

improve availability and accessibility of information of the secondary raw material in the EU. 

The consortium will create a single EU database (SmartGround database) that integrates all the 

data from existing sources and new information retrieved with time progress. Such database 

will enable the exchange of contacts and information among the relevant stakeholders (e.g. 

companies), which are interested in providing or obtaining secondary raw materials. The project 

produces detailed information of secondary raw materials from three pilot landfills of each 

partner countries. Aijala tailings pond is one of the Finnish pilots. 

 

2. Aijala tailings pond 

The Aijala copper mine was active in the community of Kisko, which is part of Salo today, in 

years 1945 – 1958. The enrichment plant worked in Ailaja till 1974, as the ore was brought 

from the nearby Metsämonttu Zn-Pb mine between years 1952 – 1958 and 1964 – 1974. Also 

ore from Telkkälä Ni-Cu mine was enriched in Aijala in 1970. (Sipilä, 1994) 

The composition of Aijala tailings pond has been studied already in 1982 by Kokkola. 

The Aijala tailings pond contains around 2 million tons of waste which average metal content 

is as follows: 0.12 % copper, 0.5 % lead, 0.11 % silver and 0.69 ppm gold. Thickness of the 

tailings layer is on average 8.7 m and the deepest part is 12 m thick. (Sipilä, 1994, Kokkola, 

1982) 
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3. Soil drilling and geochemistry 

In summer 2016 Geological Survey of Finland took additional samples of the Aijala tailings 

pond. Five additional drill holes were made and the tailings samples were analysed in 1 m 

intervals, 48 samples in total. A vast geochemical analysis was carried out, but in this article 

only copper, zinc, lead and silver are referred to. 

Even if the tailings material looked the same from top to bottom, the geochemical assays 

of the samples taken from the drill holes revealed the interface of the tailings material from 

Metsämonttu and Aijala mines. The top part which contained tailings from Metsämonttu mine 

was rich in lead and the bottom part containing tailings from Aijala, was rich in copper (Figure 

1). 

 

 
Figure 1. Topography of the Aijala tailings pond with an aerial photo draped onto the surface. 

The copper and lead content in the tailings are marked with green and grey bars next to the old 

and new drill holes. 

 

4. Geophysical studies 

Geophysics was utilised to study the inner structure and dimensions of the tailings pond. 

Gravimetric, magnetic and electromagnetic GEM-2, and electrical resistivity tomography 

(ERT) surveys were carried out. Results of the gravimetric survey were used to interpret the 

thickness of the tailings pond and depth of the bedrock surface. The drill holes were used as 

reference points in the interpretations, as they were drilled to the hard soil material underneath 

the tailings pond. Magnetic survey gave a general picture of the iron content in different parts 

of the tailings pond. GEM-2 method was utilised to map electrical conductivity of the tailings 

ponds surface layers from 1 up to 10 m depth. Electrical resistivity tomography was used to 

study changes in the electrical conductivity of the tailings material up to 30 meters depth. The 

results of the geophysical interpretations helped in defining the inner structures of the pond and 

they also gave more information of the variation of the tailings ponds bottom and bedrock 

surface. The results were utilised in 3D modelling of the structure of the tailings pond (Figure 

2). 
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Figure 2. Bedrock (grey) and tailings bottom (brown) layers were generated according to the 

gravity interpolations of the bedrock depth (grey points) and tailings bottom (yellow points). 

 

 

5. Mineral resources estimation 

The mineral resources in the Aijala tailings pond were estimated by interpolating the metal 

contents in the old and new drill cores into a 1 m3 resolution block model. Because the 

geochemical composition of the tailings pond is not continuous, the interpolation was carried 

out separately to the Metsämonttu mine tailings layer and the Aijala mine tailings layer. 

The blocks belonging to the different layers were determined by the layers generated 

according to the gravimetric interpretations of the bedrock surface and the tailings bottom 

(Figure 2). The blocks belonging to the two different tailings layers were separated by a layer 

generated to the approximate middle of the change in geochemical content seen in the drill 

cores (Figure 1). 

We used Kriging method to interpolate the metals contents in the block model. The used 

search ellipsoid was horizontal and 200 m in length and in width and 2 m in depth. This is 

because the metal content of the layers is assumed to be rather continuous in horizontal 

direction, and the changes in metal content are more likely to be in vertical direction. 

Figure 3 shows as an example the interpolated copper content in the Metsämonttu mine 

tailings layers. The total volume of the layer is 852 399 m3, and it contains approximately 678 

tons of copper. 
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Figure 3. Block model showing the interpolated copper content in Metsämonttu mine tailings 

layer. The drill holes show copper (green) and lead (grey) contents in the analyzed samples. 

 

6. Conclusions 

The Aijala tailings pond example of a landfill as a source of secondary raw materials in EU is 

a detailed study with 3D model of the structure of the landfill. The information concerning the 

landfill can be found later in the standardised EU landfill database, and it can be utilised by the 

possible re-user of the raw material to make feasibility study and planning the operations. 
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In this study, we describe the fracture mapping project in at the Kumpula campus area, University of Helsinki. 

Central part of the project is the recently completed Kumpula campus drill hole, which gives us a possibility to 

study the areal geology in three dimensions. The aim is to map fractures of the drill core and fracturing of the 

Kumpula hill area, and make a 3D-model based on this data. Also the plan is to make XRD-tests from minerals in 

the fracture fillings and to achieve preliminary understanding of the age relationships of the different sets of 

fractures in the Kumpula area. 
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1. Introduction 

The Kumpula hill is situated in the southern part of Helsinki. In November-Dcember 2015 a 

continuously cored drill hole was drilled there, the hole being 370 m deep. With this drill core 

it is possible to make a more accurate study of the bedrock in Kumpula. There currently are 

three master thesis projects ongoing using the results of the drill core, which are related to the 

petrology, geochemistry and fracture mapping of Kumpula. 

 

2. Geological setting  

The bedrock of Helsinki formed about 1.9–1.8 billion years ago in Proterozoic era, during the 

Svecofennian orogeny (e.g., Laitala 1991). Presently, the bedrock Helsinki represents the roots 

of this orogenic belt, eroded to the present level before 590 Ma (Laitala 1991).  

Several fracture zones can be found within Helsinki area (Laitala 1991). They were formed 

during and after the Svecofennian orogeny and they reflect how stress fields in the area have 

changed with time (Elminen et al. 2008). Fracture zones can cause problems, when, for 

example, construction support structures are built on top or through one (Elminen et al. 2008).  

 

3. Structural mapping and logging 

The aim of this study is to map fractures from the drill core and compare these results to the 

fractures mapped in the field and finally make a 3D-model of the Kumpula campus area. The 

project started in January 2016, first by photographing the drill core and by getting an overall 

understanding of it. After this, more detailed logging was performed and the fractures were 

labelled. They were divided into fractures without filling, with filling and to smooth fractures. 

Also the roughness of the fracture plane and cutting angle were estimated. 

In addition to drill core logging, field work was carried out in the Kumpula campus area. 

There are six major outcrops around the Kumpula campus and along Kustaa Vaasa road there 

are road cuts as well. At the outcrops, the fractures were measured for their dip, strike, 

roughness of the fracture plane, length of the fracture, and aperture of the fracture. Possible 

fracture fillings were also inspected. 

In order to help detect fractures accurately and achieving correct RQD-measurements and 

fracture orienations, there are oriented optical and acoustic data available from the drill hole as 

well. These data have been processed with a program called WellCad (Figure 1). By using 

WellCAD it is possible to calculate the accurate angle of every fracture and also observe 
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fractures which are not clearly visible in the drill core. Our aim is also to make XRD analyses 

on the fracture fillings, in order to identify the fracture minerals and to achieve a better 

understanding of the age relationship of the fractures.  

Finally, the ultimate goal of this project is to create a 3D model of the Kumpula area 

fracturing using MOVE software and to compare it to existing data from the Helsinki area.  

 

 

Figure 1. WellCad-processed image from the drill hole at the depth of between 84.2 m and 85.2 

m. Image on the left shows optical data and image on the right shows acoustic data. Three 

fractures are clearly visible in the acoustic photo. They are at the depth of 84.74 m, 84.95 m 

and 84.99 m. Contacts between different rock types are clearly visible in the optical image. 
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4. Preliminary results and future studies 

Compilation of the fracture data is still ongoing, but some results are already available. There 

are about 800 fractures in the drill core in total and two minor fracture zones. The fracture zones 

are at depth of 108.78 to 109.21 m and 294.40 to 295.14 m. These fracture zones had to be 

cemented during drilling and their orientations are not yet clear.  

There at least two distinctly different fracture fillings: one has a red color and the other is 

green. Fracture fillings are usually found separately, but sometimes also together in the same 

fracture. Fracture orientations are still being measured and they have not yet been adjusted to 

correct geographical orientation. . 

Concerning the field measurements, overall it seems that there are two major directions 

of fractures: NE/E-SW/W and NW/N-SE/S. This is consistent with the previous results from 

the area (e.g., Wennertsröm et al. 2008).  

In the future, the plan is to perform XRD analyses on the fracture fillings so that it is 

possible to get a better idea on the composition and thermal conditions of fluids which have 

passed through the fractures. Then it is possible to make some conclusions about which of the 

two fracture directions is older. However, the main focus of the study is to create a 3D-model 

for the fractures of the area using MOVE software, in the hopes that this model then helps the 

future planning of construction activities at Kumpula.  
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This study presents an analysis of seismic cutoff depth and heat flow field of the Fennoscandian Shield. Altogether 

4190 earthquake events from years 2000-2015 in Finnish and Swedish national catalogues have been applied for 

this purpose. To model the heat flow field, 223 values from both countries and their neighbouring areas were used 

to find out if any correlation between the maximum earthquake focal depth (cutoff depth) and surface heat flow 

exists. Because heat flow and cutoff depth appear unrelated, it seems evident that regional variations of heat flow 

are caused by shallow lying variations (i.e., in upper crust) in heat production instead of deeper sources. Therefore 

one-dimensional layer models with temperature-dependent thermal conductivity are functional for the shield area. 
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1. Introduction 

The maximum focal depth (i.e. cutoff depth) of earthquakes is one of the main tectonothermal 

parameters of the lithosphere, frequently used to approximate the boundary between brittle and 

ductile transformation. In Fennoscandia, the large proportion of felsic rocks in the upper and 

middle crust indicates that this boundary roughly represents the temperature of 350 °C 

(Blanpied et al. 2001; Moisio, 2005). Several areas in the world have featured a negative 

correlation between the cutoff depth and terrestrial heat flow density (e.g. Wong and Chapman, 

1990), yet no study of this kind has been done using Fennoscandian data. 

 The spatial distribution of earthquakes in Fennoscandia has obvious concentrations on 

intraplate faults, which result from postglacial isostatic adjustment, ridge-push from distant 

plate boundaries, and changes in the gravitational potential field (Korja et al. 2015). Heat flow 

field in the area varies between 35.3 ± 6.3 mWm-2 in Archean areas to 81.6 ± 13.9 mWm-2 in 

post-Sveconorwegian granites (Slagstad et al. 2009). 

 

2. Heat flow and seismic data 

For our study, we gathered heat flow data mainly from Finland and Sweden. Norwegian, 

Danish, Estonian and Russian data from the proximity were also taken into account because we 

needed to interpolate a heat flow surface which is reasonably constrained also in Finnish and 

Swedish border regions. For interpolation, we applied the radial basis function method in 

Scientific Python (SciPy). The size of our interpolation grid was 0.05 degrees in both latitude 

and longitude dimensions, fine enough to allow a subsequent correlation with latitude-longitude 

coordinates of earthquakes. The paleoclimatic corrections to heat flow values were mainly those 

reported in the literature, yet for Russian data, an estimated bulk correction of 10 mWm-2 was 

used, because detailed data were unattainable. The resulting map (Figure 1, left) shows a 

westward- and southward-increasing trend. 

Our earthquake information was gathered from the Finnish and Swedish national 

catalogues and covered years 2000-2015. Data with magnitudes less than 0.1, and a few events 

with locations far outside both Swedish and Finnish territory were excluded. Obvious duplicates 

(N=66) were also removed. 
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For analysis, we took latitude, longitude, focal depth and local magnitude (ML) of events 

(N=4190) into consideration, 801 from the Finnish and 3389 from the Swedish catalogue. There 

appeared no obvious relation between focal depth and magnitude. 

To compare thermal and earthquake data, values from our interpolated surface heat flow 

grid were calculated at all epicentres. Five areas of notable seismic activity were investigated 

in separate subset analyses: the southern Gulf of Bothnia coast of Sweden (area 1), the northern 

Gulf of Bothnia coast of Sweden (area 2), the Swedish Norrbotten and western Finnish Lapland 

(area 3), the Kuusamo region of Finland (area 4) and the southernmost Sweden (area 5). The 

total count of events in these subsets was 3619 (Figure 2). 

The paleoclimatically corrected mean heat flow at earthquake epicenters turned out to 

be 49.8 mWm-2, virtually same as the steady-state value of 49.7 ± 0.4 mWm-2 obtained by 

Kukkonen & Jõeleht (2003) for Fennoscandian Shield and East European Platform. Therefore 

it is unlikely that earthquake epicenters are strongly biased towards certain lithologies, but they 

represent the average Fennoscandian crust reasonably well for modelling purposes, and our 

interpolation works adequately. 

Seismic cutoff depths in data of our regional subsets and the main dataset are shown in 

Table 1. As calculated from all events (Figure 1, right), the arithmetic mean cutoff depth was 

28.0 km (averaged from 90th, 95th and 99th) percentiles, with a standard deviation of 4.3 km. 

As long as the cutoff depth is assumed to be an isotherm, no hypothesis of spatially varying 

deep-seated heat sources is needed, despite differences in surface heat flow. 

 

 

 
 

Figure 1. Left: Palaeoclimatically corrected heat flow map of Finland, Sweden and adjacent 

areas. Scale is in mWm-2. The total count of data is 223. Right: Spatial distribution of our 

earthquake data. Rectangles, numbered by “1”, “2”, “3”, “4” and “5” show regions where the 

heat flow field and earthquakes were taken into more detailed investigations. 

 

 

3. Thermal modelling and conclusions 

Solving the cutoff depth gave us a parameter suitable for one-dimensional thermal models of 

lithosphere, such as a model with three layers (Kukkonen et al. 1999). In our one-dimensional 

models, parameters were set as follows: paleoclimatically corrected surface heat flow 49.8 

mWm-2, surface mean temperature 3 ºC (estimated from meteorological records), temperature 
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at the seismic cutoff depth 350 ºC, heat flow at Moho 9-15 mWm-2 (Kukkonen and Peltonen, 

1999; Kukkonen and Lahtinen, 2001), and depth of Moho 46 km (Grad et al. 2009). Thermal 

conductivity λ was dependent on temperature T by λ = λ0(1+CT) where λ0 is the surface value 

(3.1 Wm-1K-1) and C (0.0008) is an empirical factor. 

Depending on seismic cutoff depth (28 ± 4 km), three separate models were constructed. 

All models had an upper layer of 10 km thickness, yet depths of middle and lower layers were 

changed. Distinct values of heat production [µWm-3] were used as follows: in layer 1 1.48, 1.19 

or 2.43 (model 1, 2 or 3), in layer 2 1.00, 0.78 or 0.55 (model 1, 2 or 3) and in layer 3 0.50, 0.55 

or 0.36. Heat production is actually one of the most poorly known thermal parameters, yet it is 

typically largest in granitoids and smallest in mafic and ultramafic rocks which dominate the 

lower part of the crust. Other parameters were adjusted step-by-step until reasonable boundary 

conditions were met (Table 2). 

Because the obtained mean Moho temperature (516 ± 110 ºC) is smaller than the Curie 

constraint of 580 °C for magnetite, lithospheric mantle of Fennoscandia may have magnetic 

sources. To fine-tune thermal constraints of the upper crust, a larger number of heat flow 

determinations from deep boreholes (over 2 km) are important. If sufficient heat flow and 

earthquake data are available, our analysis could be repeated in other shield areas as well. 

 

 

Table 1. Earthquake cutoff depths (km) corresponding to the 90th, 95th and 99th percentiles of 

data in our five subsets and mean values weighted using the number of data in each subset as a 

weight. Parentheses indicate that less than five events with a greater focal depth than the cutoff 

depth have been registered in the area. Values for the entire study area are also given. 

 1 (N=804) 2 (N=1489) 3 (N=864) 4 (N=139) 5 (N=323) Entire area 

90th 22.4 25.1 21.9 24.0 22.8 23.4 

95th 26.6 27.5 27.8 26.3 27.1 26.9 

99th 30.4 34.7 35.6 (31.1) (31.1) 33.7 

 

 

      

Table 2. Temperature and heat flow at layer boundaries in our models. Heat production 

parameters are listed in Table 1 and other parameters explained in the text. Three values 

indicate models 1, 2 and 3, respectively. 

 Temperature 

[ºC] 

Heat flow [mWm-2] Thermal conductivity 

[Wm-1K-1] 

Surface (0 km) 3.0 (all models) 49.8 (all models) 3.10 (all models) 

Boundary 1 (10 km) 148, 153 or 131 35.0, 37.9 or 25.5 2.77, 2.76 or 2.81 

Boundary 2 (28 km, 

24 km or 32 km) 

350 (all models) 17.0, 27.1 or 14.1 2.42 (all models) 

Moho (46 km) 494, 616 or 438 12.0, 14.9 or 9.0 2.22, 2.07 or 2.29 
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Figure 2. Thermal models of the Fennoscandian crust, featuring temperature-dependent 

thermal conductivity and fixed heat production constraints for layers 1, 2 and 3 in cases with 

seismic cutoff depths of 24, 28 and 32 km. Solid symbols indicate the temperature (130 °C) of 

Kola superdeep borehole at 8 km (Popov et al. 1999) and that (40 °C) of Outokumpu borehole 

at 2.5 km depth (Kukkonen et al. 2011). For other numeric values, see Table 1. 
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We have studied Riitalampi and Viininperä intrusions; belonging mineralogically, geochemically, and temporally 

to the Type 3a postkinematic suite of the Central Finland Granitoid Complex. Generally, the biotite-hornblende 

bearing quartz monzonites have A-type geochemical affinity, e.g. high contents of total alkalis and high field 

strength elements (HFSE), and high FeO*/MgO ratio. Field observations together with numerical modelling of a 

mingling of the mafic enclaves suggest that synplutonic mafic dykes intruded to the partly crystalline intrusions, 

particularly in the case of Riitalampi intrusion. 

 

Keywords: Central Finland Granitoid Complex, A-type, bimodal magmatism, mingling 

 

1. Introduction 

Mainly compressional Svecofennian orogeny ~1.91–1.77 Ga consists of amalgamation of 

Paleoproterozoic crustal material to the Archean Karelia Province (e.g. Lahtinen, 1994, 

Nironen, 1997). Voluminous granitoid magmatism is related to the compressional stage leading 

to the formation of the large 40000 km2 Central Finland Granitoid Complex (CFGC). Bulk of 

the CFGC is composed of ca. 1.89–1.88 Ga granitoids that are considered synkinematic with 

respect to the orogeny (Vaasjoki, 1996, Nironen 2005).  

A volumetrically minor suite of ca. 1.88–1.87 Ga weakly to undeformed and unfoliated 

porphyritic granitoids have also been described in the CFGC. These granitoids are often referred 

as postkinematic granitoids (Elliott et al., 1998), they generally exhibit A-type geochemical 

affinity, e.g. high total alkalis, high FeO*/MgO ratio, as well as high Ba and Zr concentrations 

(Nironen et al., 2000). Based on mineralogical and geochemical differences postkinematic 

granitoids can be divided into four subgroups (Elliott et al., 1998; Nironen et al., 2000). Mainly 

monzogranitic and granodioritic Type 1 differs from mineralogically similar Type 2 by e.g. 

lower total alkali concentrations. Type 3a consists of mainly quartz monzonites and 

monzogranites with pyroxene-bearing marginal assemblage, whereas Type 3b has pyroxene 

throughout. In addition to the felsic magma, a mafic magma component have been described 

from some of the intrusions (Nironen et al., 2000). A petrogenetic model, proposed for the 

postkinematic suite, is litospheric delamination at the later stage of the main crust forming event 

followed by mantle-derived mafic underplating and intraplating, which provided heat to 

partially melt granulitic lower crust (Nironen et al., 2000; Elliott, 2003). 

 

2. Intrusion descriptions 

The 1879 ± 4 Ma (Hannu Huhma written communication, 2015) Riitalampi intrusion is 10 x 5 

km in dimensions (Fig. 1). The northern boundary of the intrusion is located 4 km south from 

the village of Toivakka in the southern CFGC. The intrusion consists mostly of unfoliated alkali 

feldspar porphyritic biotite-hornblende bearing quartz monzonite. Subhedral to ovoidal alkali 

feldspar phenocrysts are regularly mantled by < 1 mm thick layers of re-crystallized, often 

myrmekitic fine grained plagioclase and quartz. As typical accessory minerals zircon, apatite, 

allanite, ilmenite, and titanite can be observed. Abundant mafic and intermediate enclaves and 

intruding dykes can be found throughout the intrusion. The enclaves are elongated and generally 

5–20 cm in diameter, but the largest ones exceed 1 m in diameter. Some of the enclaves are 
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rimmed by < 5 mm thick reaction rims of amphibole and biotite, and internal alkali feldspar 

xenocrysts are a typical feature, evidencing synplutonic mingling (Fig. 2). 

Ca. 4 km southeast from the Riitalampi intrusion lies the circular (3.5 x 3.5 km) 

Viininperä intrusion (Fig. 1). Majority of Viininperä intrusion is composed of alkali feldspar 

porphyritic biotite-hornblende quartz monzonite with medium-grained groundmass. 

Phenocrysts are similar with alkali feldspar phenocrysts of the Riitalampi intrusion. Northern 

margin, however, consists of texturally similar biotite-hornblende syenogranite with several 

mafic to intermediate enclaves showing similar mingling structures as described in Riitalampi. 

In addition, a monzogabbro has been found at one outcrop near the center of the intrusion.  

 
Figure 1. Geological map of the Riitalampi and Viininperä intrusions (Mikkola et al., in review). 

 

3. Geochemistry and geochronology 
Whole-rock geochemical analyses were performed with X-ray fluorescence (XRF) and 

inductively coupled plasma mass spectrometry (ICP-MS) by Labtium Ltd.. Both of the studied 

intrusions show high concentrations in alkalis (K2O+Na2O = 7.85–9.14 wt.%) and HFSE, 

especially Zr (455–844 ppm), and high FeO*/MgO ratio (5.28–12.45) (Fig. 3) what makes them 

compositionally similar with A-type granitoids. These geochemical features separate studied 

intrusions from the synkinematic suite, which is characterized by lower total alkali, Ba, and 

HFSE concentrations, and lower FeO*/MgO ratio at similar SiO2 contents (Fig. 3). 

The Viininperä intrusion was dated by in-situ U-Pb analysis of zircons. The analysis was 

performed at the Finnish Isotope Geology Laboratory with laser ablation inductively coupled 

plasma mass spectrometer (LA-ICPMS) equipped with single collector. A total of 25 spots were 

analysed of which 4 were discarded because of high concentrations of common lead. The 21 

selected spots gave the Viininperä intrusion an emplacement age of 1882 ± 3 Ma (Hannu 

Huhma, written communication, 2016). 



LITHOSPHERE 2016 Symposium, November 9-11, 2016, Espoo, Finland  155 

___________________________________________________________________________ 

 
Figure 2. a) A sketch of a synplutonic dioritic dyke (black) intruding into the Riitalampi quartz 

monzonite (white) on a vertical wall of a quarry (outcrop ASM$-2013-224). b) Sample ASM$-

2013-224.1 showing dioritic enclave with alkali feldspar xenocrysts inside the host quartz 

monzonite. A thin biotite-hornblende-bearing reaction rim can be observed around the enclave. 

Photo taken by Jouko Ranua. Length of the sample is ca. 20 cm.  

 

 
Figure 3. Selected bivariate diagrams of Riitalampi and Viininperä intrusions, associated 

enclaves (enc), and Viininperä monzogabbro (maf). The different types of postkinematic 

intrusions (Type 1, 2, 3a and 3b) and synkinematic rocks (the grey area) are added for 

comparison (Nironen et al. 2000). 

 

4. Mingling model of mafic and felsic components 

We have used an unsophisticated model, to identify the observed mingling between mafic and 

felsic components, with MAGFRAC, a program based on least-squares approximation (Morris, 

1984). Whole-rock composition of a dioritic enclave (PIM$-2012-88.2) was mixed with 

mineral major element oxide compositions of Riitalampi quartz monzonite sample ASM$-

2013-224.1 that were analysed with electron probe microanalyzer (EPMA) equipped with four 

wavelength dispersive detectors (WDS) at the University of Helsinki. The aim was to produce 
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a mixture that would be geochemically equivalent to an intermediate enclave containing alkali 

feldspar xenocrysts inside quartz diorite (ASM$-2013-224.2) associated with the sample 

ASM$-2013-224.1. 

The mingling model, presented here, includes mixture of the dioritic enclave with alkali 

feldspar, plagioclase, quartz, biotite, and hornblende of the quartz monzonite. The mineral 

compositions used are averages of five analysis in the case of feldspars, and six analysis in the 

case of biotite and hornblende. The best fit was obtained by mixing of 84.5% diorite with 7.7% 

alkali feldspar, 7.7% plagioclase, 1.77% quartz, -1.8% biotite and -0.6% hornblende (sum r2 = 

0.007; the closer to zero the better the fit). The modelled relative abundances of alkali feldspar, 

plagioclase and quartz are similar with the abundances observed in the sample ASM$-2013-

224.1. 

 

5. Discussion 

Clear geochemical resemblance between the studied intrusions and Type 3a postkinematic suite 

is evident by high total alkali, Ba, and Zr concentrations. The ages of the intrusions 1879 ± 4 

Ma and 1882 ± 3 Ma support the interpretation of the postkinematic suite.The mixing model 

provide new evidence related to the suggested bimodal nature of the postkinematic magmatism. 

Synplutonic mafic dykes and small intrusions intruded to the quartz monzonitic magma that 

was already partly crystallized, as evidenced by the alkali feldspar xenocrysts inside the 

enclaves. The model suggests that alkali feldspar, plagioclase, and quartz participated in the 

mingling process of the magmas. The role of biotite and hornblende is somewhat ambiguous, 

as the best fit for the model was achieved by removal of these phases from the dioritic 

component. The biotite-hornblende-rich reaction rims around the enclaves supports removal of 

biotite and hornblende from dioritic component. 
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