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[1] We perform systematic simulations of slip using a quasi-dynamic continuum model of
a two-dimensional (2-D) strike-slip fault governed by rate- and state-dependent

friction. The depth dependence of the @ — b and L frictional parameters are treated in an
innovative way that is consistent with available laboratory data and multidisciplinary field
observations. Various realizations of heterogeneous L distributions are used to study
effects of structural variations of fault zones on spatiotemporal evolution of slip.

We demonstrate that such realizations can produce within the continuum class of models
realistic features of seismicity and slip distributions on a fault. We explore effects of three
types of variable L distributions: (1) a depth-dependent L profile accounting for the
variable width of fault zones with depth, (2) uncorrelated 2-D random distributions of
L with different degrees of heterogeneity, and (3) a hybrid distribution combining the
depth-dependent L profile with the 2-D random L distributions. The first type of

L distribution, with relatively small L over the depth range corresponding to the
seismogenic zone and larger L elsewhere, generates stick-slip events in the seismogenic
zone and ongoing creep above and below that region. The 2-D heterogeneous
parameterizations generate frequency-size statistics with event sizes spanning 4 orders

of magnitude. Our results indicate that different degrees of heterogeneity of L distributions
control (1) the number of simulated events and (2) the overall stress level and fluctuations.
Other observable trends are (3) the dependency of hypocenter location on L and

(4) different nucleation phases for small and large events in heterogeneous distributions.
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1. Introduction

[2] In the past three decades, rate- and state-dependent
(RS) friction laws have been successfully applied to
numerous aspects of earthquake and fault mechanics
[e.g., Dieterich, 1979; Ruina, 1983; Scholz, 2002]. Being
originally derived to fit laboratory data of frictional experi-
ments, the empirical RS friction was shown to be a
powerful tool in modeling various stages of the seismic
cycle. The RS formulation combines the logarithmic
increase of static friction with hold time and the slip
weakening behavior during dynamic instabilities in a
unified and consistent manner. Rate- and state-dependent
friction laws were applied in one-dimensional (1-D), 2-D,
and 3-D fault models to simulate seismic cycles including
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preseismic slip and nucleation, the growth of dynamic
instabilities, healing of fault surfaces, earthquake afterslip,
aftershocks, and long deformation histories [75e and Rice,
1986; Rice, 1993; Dieterich, 1994; Ben-Zion and
Rice, 1995; Marone, 1998]. RS friction has also been
used to describe variations of seismicity rates and related
changes of earthquake patterns [Dieterich et al., 2000;
Parsons et al., 2000; Toda et al., 2002; Stein, 2003].

[3] Previous studies of spatiotemporal evolution of slip
on a fault governed by rate- and state-dependent friction
[e.g., Rice, 1993; Ben-Zion and Rice, 1997; Tullis, 1996;
Lapusta et al., 2000] employed frictional properties
corresponding to fairly homogeneous faults. In most cases,
the only types of heterogeneities were lab-based depth
variations of the parameters a and b that produce transitions
between stable velocity-strengthening (¢ > b) and unstable
velocity-weakening regimes (a < b) (Figure 1).
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Figure 1. Schematic diagram summarizing the main features of rate- and state-dependent friction

obtained in laboratory experiments with slip rates in the range of 10 °~5 x 10~* m/s. Constitutive
parameters a and b relate changes in slip rate (v; — v, > v;) and state to frictional strength. L is the slip

distance for evolution of the friction coefficient .

[4] In velocity stepping experiments, a and b are consti-
tutive parameters relating changes in slip rate and state to
frictional strength. The parameter a characterizes the in-
crease in strength with accelerated slip, and b reflects the
increase in strength with increasing total area. The onset of
creep due to temperature-induced quartz plasticity explains
the velocity-strengthening regime below ~15 km depth in
the commonly used a — b profile obtained from data
collected by Blanpied et al. [1991]. However, the physical
origin of the transition at ~3 km depth is less constrained.
Synoptic models of shear zones [e.g., Scholz, 1988] suggest
a stable a > b regime for the topmost portion of faults due to
highly fractured and less consolidated material that is prone
to dilatancy hardening. However, the stabilizing mechanism
is not supported unequivocally by data points in the studies
of Blanpied et al. [1991] and Stesky [1975].

[s] Another important frictional parameter is the critical
slip distance L for evolution of the friction coefficient
(Figure 1). Laboratory measurements show that the critical
slip distance L is correlated with the width of the gouge
zone [Marone, 1998, and references therein], and scales
with the dominant wavelength that characterizes the rough-
ness of the sliding surfaces [Ohnaka, 2003, and references
therein]. This observation is supported by Perfettini and
Campillo [2003], who concluded that L depends on the
observation scale, explaining the discrepancy between lab-
oratory and seismological observations of the characteristic
length. A wide range of field observations indicates that the
width of the gouge zone in the brittle crust decreases with
depth [Sylvester, 1988; Chester and Chester, 1998; Ben-Zion
et al., 2003b] and that fault surfaces become progressively
smoother with cumulative slip [Wesnousky, 1988; Stirling et
al., 1996; Ben-Zion and Sammis, 2003]. While natural fault
surfaces are not perfectly planar, previous studies have
shown that model simulations of heterogeneous faults with
planar representations can reproduce the general observed
features of earthquake patterns [Ben-Zion, 1996; Miller et

al., 1999; Zoller et al., 2005b]. Such planar representations
are computationally far more efficient than representations
that include geometrically complex structures [Robinson and
Benites, 1995; Lyakhovsky et al., 2001]. It is therefore
important to develop improved planar representations that
account for observed properties of sliding surfaces.

[6] Previous simulations of earthquakes with planar rep-
resentations generally fall into continuum models that are
independent of the employed grid size [Rice, 1993; Lapusta
et al., 2000] and inherently discrete models that are grid-
size-dependent [Carlson and Langer, 1989a; Ben-Zion and
Rice, 1993; Zoller et al., 2005c]. In this study we use
heterogeneities of L along strike and with depth to investi-
gate the effects of geometrical heterogeneities of faults on
various aspects of earthquakes within the continuum frame-
work. More specifically, we perform 3-D quasi-dynamic
simulations of slip on a vertical strike-slip fault embedded
in a 3-D elastic continuum using a family of 2-D anisotropic
distributions of L. Applied variations of L along strike may
be used to provide approximate representations of faults at
different evolutionary stages, whereas variations with depth
reflect generalized shear zone architecture. The transition of
behavior in the top few kilometers of the crust that was
modeled in previous works by depth variations of a — b is
accounted for here by depth variations of L. Earthquake
catalogs are extracted from the continuous simulated slip
histories using a procedure that approximates the quantities
derived from observed seismograms. The efficient new
design of the present study, treating geometrical heteroge-
neities of fault zones as geometrical variations of frictional
properties in a continuum planar model bridges the gap
between the existing discrete and continuous models
[Ben-Zion and Rice, 1995; Rice and Ben-Zion, 1996].

[7] The remainder of the article is organized as follows.
In section 2 we provide background material on the formu-
lation problem, the constitutive equations, and their trans-
lation into the numerical scheme. In section 3 we discuss
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Figure 2. Rate- and state-controlled vertical strike-slip fault plane embedded in a 3-D elastic half-space,
loaded by aseismic slip rate v° = 35 mm/yr at its downward extension. Frictional properties apply over a
depth range of 24 km along a fault of length 100 or 200 km.

some basic parameter choices and their influence on the
continuum limit approach. Section 4 discusses the response
of a standard model to demonstrate the validity of our
numerical procedure. We then explore systematically the
effects of various depth-dependent L profiles with homoge-
neous along-strike distributions. In section 5 we introduce a
typical implementation example, focusing on the conse-
quences of different L., values. We proceed with the
discussion of seismicity generated by several 2-D distribu-
tions with different degrees of heterogeneity approximating
fault zones at different evolutionary stages. Finally, in
section 6 we present results obtained by a hybrid approach,
employing realistic depth-dependent L profiles superposed
on heterogeneous L patterns along strike and with depth.

2. Numerical Model
2.1. Stress-Slip Relation

[8] Figure 2 shows the model geometry and coordinate
system of a vertical strike-slip fault plane in a 3-D elastic
medium of rigidity G and shear wave velocity v, following
Rice [1993], Ben-Zion and Rice [1995], Ben-Zion and Rice
[1997], and Lapusta et al. [2000]. The evolution of slip u(x,
z, t) on the fault plane y = 0 is associated with a redistri-
bution of shear stress T(x, z, 7). In the discretized case, the
resulting integral relation connecting u and T can be
expressed by a set of linear equations based on the quasi-
static elastic solution for uniform slip over a rectangular
dislocation cell in an elastic half-space [Chinnery, 1963]:

(1) = 10+ (1) = vy () M- (1)

Here, 7° is a background stress value chosen to keeg 7;>0
in cases where slip is possibly overshooting, but T has no
influence on the evolution of the system. Shear stress
redistribution due to loading and slip on the fault is given by
) = Zk ZIKH,H 1 (% £ — ui2)). Indices i, k and j, I

denote cell locations on the numerical grid along strike and
depth, respectively. The elastostatic kernel (or stiffness
matrix) K relates the slip at cell &/, uy,, to change of stress at
cell ij, 7, at some time ¢, and was calculated assuming 10
periodic repetitions of the fault along strike to approximate
infinite periodic boundary conditions. A constant driving
plate velocity, v™°, is imposed at the downward extension of
the fault, and u,(#) = v;(?) is the slip rate of a certain cell.
The term 1 in equation (1) accounts for seismic radiation
damping and is equal to G/(2vs) [Rice, 1993]. Including this
factor makes the description quasi-dynamic, since it
incorporates the elastodynamic limit result for any instanta-
neous changes in T;(¢) and v;(#). It also has the advantage of
allowing stable calculations to be carried through dynamic
instabilities, without requiring the computationally expen-
sive calculations of the exact elastodynamic solution
performed by Ben-Zion and Rice [1997], Lapusta et al.
[2000], and Lapusta and Rice [2003].

2.2. Friction

[9] To describe the frictional resistance between two
adjacent fault walls, we use the laboratory derived rate-
and state-dependent friction formulation. We apply the
standard Dieterich-Ruina description of the friction coeffi-
cient, W(x, z, t) [Dieterich, 1979; Ruina, 1983; Dieterich,
1994], which depends on sliding velocity, v(x, z, f), and a
state variable, 0(x, z, 1),

w(x,z,1) = pg + a(z) In (V(xvijt)) +5(z) In (%) )

The state variable is interpreted as being a measure of
maturity of contacts on a fault surface and it has units of
time. For the Dieterich-Ruina (“slowness” or ‘“ageing”)
form of the law, the state evolves according to

(x,z,t) {— v(x,z,1)0(x,z,¢)
a L(x,z)

3)
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In equation (2), o is the nominal friction coefficient, a and
b are constants that depend on temperature (and hence
depth), L is the critical slip distance for friction evolution
(Figure 1) and v, is a normalizing constant (here vy = v™°).

[10] The characteristic slip distance L is a length scale
over which a new population of contacts between two
surfaces evolves. As mentioned earlier, laboratory values
of L depend on the fault roughness and gouge width.
Typical values in rock sliding experiments done to date
are in the range 107°~5 x 10~* m [Ben-Zion, 2003].

[11] The size of L determines a critical spatial dimension
of a process or nucleation zone, #*, and to solve the
problem in the continuum limit it is necessary that 7 <
h*, where h is the numerical cell size [Rice, 1993]. This
places strong constraints on the computational efficiency,
since cpu time scales with the number of cells. Thus
calculating slip histories within the continuum framework
can be done at present only for values of L chosen to be 1-2
orders of magnitudes larger than laboratory values. Over
this breakdown slip length, L, the friction coefficient p
evolves to its new steady state value

}LSS(X,Z, t) = Ho + (a(Z) - b(Z)) In <M> .

Vo

)

A stability analysis of a single degree of freedom system
[Ruina, 1983] shows that parameters ¢ and b define two
possible stability regimes, depending on the difference ¢ —
b. The coefficient of friction, p, relates the shear stress on a
fault, T, to the effective normal stress, o, via

T(x,2,1) = W(x,2,1) 0e(2) = plx,2,1) (0n(2) = p(2)),  (5)

where o, is lithostatic normal stress on the fault and p
denotes the pore pressure in the fault zone. Inserting
equation (2) into (5) and differentiating the resulting
equation with respect to time leads to the velocity evolution

ov(x,z,t) (7 a(z) 7' [T(xz0) _b(2) 0(x,z,1)
o (ce(z) + v(x,z, t)) 8 ( 0e(2) 0(x,z,1) ) ’
(6)

where overdots denote time derivatives. We use the effective
damping parameter m = fg X 7o, With fj being a factor
controlling quasi-dynamic (fg = 1) or overdamped quasi-
dynamic (f3 > 1) simulations. See Rice [1993] for a
discussion of slip evolution with f; > 1. In this study we
apply f4 = 107 for reasons of computational efficiency. We
performed simulations to investigate possible differences in
response types for models with f3 = 1 and f; = 10%. The
results are robust with respect to the conclusions drawn in
this work.

[12] Temporal changes of shear stress, ', are given by the
sum over velocity differences, multiplied by the stiffness
matrix K from equation (1), and the state evolution 0 is
described by equation (3). The response of the system is
thus governed by two ordinary differential equations of the
state variable 6 and slip rate v. Shear stress is computed
using equation (1) with ™° = 100 MPa.

2.3. Computation Technique

[13] We solve the set of three resulting first-order ordi-
nary differential equations (equations (6) and (3) plus i = v)
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using an explicit Runge-Kutta method with adaptive step-
size control, DOP853 [Hairer et al., 1993]. We use the
fast Fourier transform (FFT) to compute the along-strike
contribution of the stress redistribution, T', executing a
matrix multiplication including the stiffness kernel K|;_;,
[Rice, 1993; Stuart and Tullis, 1995; Rice and Ben-Zion,
1996]. Using the FFT, the computational timescales with
(nx logy(nx)) nz? instead of nx® nz*, where nx, nz denote the
number of computational cells along strike and depth,
respectively, but requires nx to be a power of 2 [Rice, 1993].

3. Parameter Setting

[14] As pointed out by Rice [1993], the spatial resolution
of the computational grid, /4, has to be much smaller than a
critical nucleation size, #*. The condition 2 < A* is
required to solve the governing equations in the continuum
limit, making the computational mesh stiff enough to
prevent single cells from slipping independently from
neighboring computational points. The critical nucleation
size for the current strike-slip geometry is found to be [Rice,
1993]

B _L. (7)

B T Oe (b - a)max

Previous quasi-dynamic studies employ A/h* ratios between
0.06 [Kato and Hirasawa, 1999] and 0.6 [Shibazaki and Iio,
2003], whereas Rice [1993] showed that A/h* = 0.25 is
sufficient for conditions associated with relatively slow slip
velocity. Because we employ 2-D heterogeneous distribu-
tions, we choose to min[L(x, z)] to determine ~#* in equation
(7). The maximum A/h* ratio in this study is 0.4, a value
slightly larger than that used by Rice [1993]. This value
applies only for regions where L = L,;,, but for all other
regions A/h* is smaller. Analysis of the results discussed in
sections 4—6 indicates that we treat the problem in the
continuum limit.

[15] The general structure of shear zones is often
described by three distinct depth sections [Scholz, 2002;
Marone, 1998]:

[16] 1. The topmost 3—5 km usually consist of fault
gouge and damage zone, which tend to stabilize slip
instabilities due to dilatancy hardening mechanisms. In
simulations with RS friction this strengthening zone is
usually modeled by positive a — b values.

[17] 2. The depth section between z ~ —5 km and z ~
—15 km has a localized slip zone in a competent lithified
rock, where most earthquakes nucleate. Exhumed fault zone
structures reveal extreme localization of slip along this
portion [e.g., Chester and Chester, 1998; Ben-Zion and
Sammis, 2003]. Here, a < b produces velocity weakening
conditions allowing instabilities to nucleate.

[18] 3. Below the seismogenic depth (z < —15 km) the
fault response is again stable due to the onset of quartz
plasticity [e.g., Scholz, 2002]. This transition is modeled by
a — b > 0, giving rise to a velocity-strengthening behavior.

[19] In this study we employ three different a — b
profiles.

[20] 1. A standard depth profile following the above
common description of @ — b regimes at different depth
sections (Figure 3a, profile 1). These conditions are chosen
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Figure 3. (a) Employed a, b, a — b profiles. Profile 1, standard distribution after Blanpied et al.

[1991]; profile 2, standard distribution without velocity-strengthening zone at shallow depth.
(b) Pressure profiles. Lithostatic normal stress, o,, pore pressure, p, and effective normal stress, o..
(c) Example L profiles; 1, o =50; 2, a =2 x 10% and 3, o =2 x 10° (see equation (8)).

primarily to validate our numerical procedure against pre-
vious simulations. The depth dependency of ¢ — b has been
suggested by interpreting data obtained by Blanpied et al.
[1991]. They performed friction experiments with granite
under hydrothermal conditions at various temperatures, and
related their temperature-dependent data to depth using a
Lachenbruch-Sass geotherm for the San Andreas fault.

[21] 2. A modified standard a — b profile where we keep
a constant instability-promoting a — b < 0 value for the
entire range from the surface to z = —15 km (Figure 3a,
profile 2). We use this approach for most of our case studies.
As will be demonstrated, a distribution of the critical slip
distance L with relatively large values in the shallow portion
of the crust produces the same stabilizing effect that was
obtained in previous works by using a — b > 0 above z =
—3 km. We note that Tse and Rice [1986] also used a < b
for the shallow crust based on data from Stesky [1975]
with a velocity weakening zone (¢ < b) down to 300°C
(z = —11 km).

[22] 3. In one set of simulations where L is chosen to be a
function of depth only, we treat a — b = —0.004 = const, so
that the entire fault is in a velocity weakening regime. This
allows us to isolate the effects of the applied L profile on the
model response.

4. Homogeneous L Distribution Along Strike
4.1. Standard Model, Constant L

[23] To verify our numerical procedure, we compute the
response of the 2-D strike-slip model to several cases with
spatial distribution of RS frictional parameters similar to
those used in previous studies [7se and Rice, 1986; Rice,

1993; Ben-Zion and Rice, 1997; Lapusta et al., 2000].
The response of such a model (MS1 in Table 1) is shown
in Figure 4a; here we apply the standard depth dependent
a — b profile with two velocity-strengthening regions at
the top and bottom of the fault and L being constant over
the plane. Typical features of the slip evolution are
creeping responses in the velocity-strengthening sections
(a — b > 0) above z = —3 km and below z = —14 km,
and quasiperiodic system size stick-slip events over the
seismogenic depth section with velocity-weakening be-
havior (@ — b < 0).

4.2. Depth-Dependent L Profiles

[24] In contrast to previous studies we interpret the
average depth structure of shallow fault zones, and an
associated transition from stable to unstable regimes, in
terms of the critical slip distance parameter L. As can be
seen from equation (2) and Figure 1, the larger L the longer
two adjacent fault walls have to slide past each other for the
coefficient of friction to drop to its steady state velocity-
weakening value, pg(v2) < (v1) for @ < b, where v; and
v, > v; denote velocity values before and after the velocity
change, respectively. Therefore regions where p does not
drop below py(v;) during small slip events, due to a large
critical slip distance, will be effectively in a velocity-
strengthening regime, although a < b allows for unstable
sliding.

[25] The profiles shown in Figure 3c give examples of L
distributions that can stabilize the response of the fault
above and below the seismogenic zone. The minimum
value, Ly, is determined by the size of the grid to assure
that in most places 4 < h*. The values at the bottom and
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Table 1. Overview of Models With Depth-Dependent L Profiles®

Model Kiengths Zdepths Response R

Name L Distribution Liin, M Q a—>b km km nx nz h/h* Type 1, years Figure
MSl1 const 0.02 - profile 1 100 24 256 64 0.2 stick-slip 76.5 4
MLI profile 0.02 50 const 100 24 512 128 0.1 stick-slip 87.6 5
ML2 profile 0.01 5 x 10 const 100 24 512 128 0.2 stick-slip 29.8 -
ML3 profile 0.02 2 const 100 24 256 64 0.2 stick-slip 145.1 -
ML4 profile 0.02 5 const 100 24 256 64 0.2 stick-slip 129.2 -
MLS5 profile 0.02 10 const 100 24 256 64 0.2 stick-slip 114.6 -
ML6 profile 0.02 20 const 100 24 256 64 0.2 stick-slip 99.6 -
ML7 profile 0.02 50 const 100 24 256 64 0.2 stick-slip 93.1 4
MLS profile 0.02 10 const 100 24 256 64 0.2 pattern - -
ML9 profile 0.02 2 % 10° const 100 24 256 64 0.2 pattern - 6
ML10 profile 0.02 2 x 10% const 100 24 512 128 0.1 pattern - 6
MLI1 profile 0.02 5 x 10 const 100 24 256 64 0.2 pattern - -
MLI12 profile 0.02 10° const 100 24 256 64 0.2 pattern - -
MLI13 profile 0.02 2 x 10° const 100 24 256 64 0.2 pattern - 6
ML14 profile 0.02 2 % 10° const 200 24 512 64 0.2 pattern - 6
MLI15 profile 0.02 5% 10° const 100 24 256 64 0.2 pattern - -
MLI16 profile 0.02 10* const 100 24 256 64 0.2 pattern - -
ML17 profile 0.02 10° const 100 24 256 64 0.2 pattern - -
ML18 profile 0.04 50 const 100 24 256 64 0.1 stick-slip 67.3 -
MLI19 profile 0.04 10 const 100 24 256 64 0.1 creep - -
ML20 profile 0.04 2 x 10* const 100 24 256 64 0.1 creep — —

Profile 1 for a — b refers to Figure 3a; 2, interevent time; stick-slip, regular stick-slip behavior; pattern, nonuniform slip evolution; creep, the whole fault

slides stably (not shown).

top of the computational region, Ly, and Ly, respectively,
are determined by

Depth [km]

Lptm = o X Liin
Ligy = max [1,0.1 X o X Lipip.

10

Figure 4.

Slip [m]

Between Liop, Lmin and Luyin, Lpm, the L values are
interpolated linearly. To isolate the effects of such an
employed L profile, we keep ¢ — b = —0.004 = const,
although a > b below z ~ —15 km might be more
realistic. Figure 4b illustrates the slip evolution in response

Slip [m]

(a) Stick-slip response of model MS1 in Table 1. Applied @ — b profile 1 from Figure 3a, L =
0.02 m = const, h/h* = 0.2, = 10% X 1. (b) The same characteristic behavior obtained for model ML7,
where a — b= —0.004 = const, L,;;, = 0.02 m, o = 50 (profile 1 of Figure 3c), i/h* = 0.2, n = 10% x Mo-
Lines are drawn every 4 years.
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Figure 5. (a) Slip evolution of model ML1 in response
to a — b= —-0.004 = const, Ly, = 0.02 m, o« = 50
(profile 1 of Figure 3c), h/h* = 0.2, 1 = 10> x v,. E1, E2
mark successive smaller instabilities around z = —12 km
prior to the main slip event, E3. Lines are drawn every
2 years. (b) Corresponding maximum velocity evolution.
Two smaller events are clearly identifiable 26 and 37 years
prior to the characteristic slip event, respectively.

to the employed L profile 1 in Figure 3¢ with o = 50, i.e.,
Liin = 0.02 m, Ly, = 1 m and Ly, = 0.1 m, respectively
(ML7 in Table 1). Although the creeping behavior at the
surface is less pronounced and coseismic slip extends
further down compared to the standard model, these
simulations match qualitatively the regular stick-slip
behavior generated with the standard parameter setup of
Figure 4a.

[26] To investigate additional properties of the response
pattern, we perform several simulations with different L .;,
and o, as well as different spatial dimension (Xjengm) and
discretization (%) of the model. To examine the effect of
decreasing A/h*, we repeat the simulation leading to
Figure 4b, employing the same parameters except doubling
the number of cells along strike and depth, thus reducing
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h/h* from 0.2 to 0.1. As can be seen in Figure 5 (MLI in
Table 1), the response to the applied reduction in A/h*
duplicates the overall slip evolution of Figure 4b. In
addition, the more refined calculations produce two
smaller events (E1, E2 in Figure 5) nucleating 26 and
37 years prior to the ‘main shock’, respectively. Note that the
tendency for this behavior can also be seen in the response to
the original model where A/h* = 0.2 (Figure 4b), i.e., the
slip profiles show a slightly different temporal evolution
compared to the standard model (Figure 4a). The discrep-
ancy between the two models with A/A* = 0.2 and 0.1,
respectively, raises the question whether the obtained
numerical solution converged to the “true” one. Lapusta
et al. [2000] found that in fully elastodynamic approach
h/h* has to be smaller than 0.025 to converge to the
underlying model response. Our quasi-dynamic simula-
tions can be done with a coarser grid, although our
employed cell size is apparently not sufficiently small to
obtain results that are fully independent of the discretiza-
tion. Some of the small-scale features of our results may
therefore depend on the employed grid. However, the
overall first-order results (e.g., slip versus depth profiles
with creeping and stick-slip regions) are stable with regard
to finer discretizations.

[27] The average repeat time, 7, of the characteristic slip
events in the seismogenic portion of the fault is a decreasing
function of o. For L;, = 0.02 m, 2 = 100/256 km, h/h* =
0.2 and o = 2,5,10,20 and 50 we obtain 7 =
145.1,129.2,114.6,99.6 and 93.1 years, respectively
(ML3-ML7 in Table 1). The decrease in # reflects the
growing disorder as the system approaches a change in the
response type. The change from system-size events to
more irregular response type associated with o = 50
(ML7) and o = 100 (MLS), respectively, marks the
transition in behavior for models with L,;, = 0.02 m.
The result shown in Figure 5 for o = 50 and & =
100/512 km — h/h* = 0.1, has ¢ = 87 years, a slightly
smaller value than 93.1 years of the #/A* = 0.2 simulation.
The origin for the difference of 4 years is the additional
stress drops of the two small events associated with each
main event, leading to shorter interevent times of the main
events.

[28] With the given spatial discretization of the model
(h = 391 m) we perform additional numerical experiments
for increasing values of o, ranging from 10*~10° (MLS8-9,
ML11-13, ML15-17 in Table 1). In contrast to the regular
stick-slip response to the applied L profiles of Figures 4b
and 5, slip evolution for o > 50 tend to be more irregular.
Figure 6 gives a comparison of event sequences at z =
—10 km for several parameter sets.

[29] Figures 6a and 6b show responses to identical
parameter sets Ly, = 0.02 m, o =2 X 10, W/h* = 0.2 on
100 km and 200 km long strike-slip fault zones, respectively
(ML13, ML14 in Table 1). The small-scale features of the
generated slip pattern do not coincide, but both panels show
similar characteristic behavior including irregular slip
events of different size. In particular, the seismic slip of
‘large’ events is of the same order of magnitude, indicating
that this quantity is independent of the fault dimension.
Figure 6¢ (ML9 in Table 1) presents slip evolution to a set
of parameters which differs only in o =2 x 107 from those
producing the results shown in 6a. We find that even for o =
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Figure 6. Slip evolutions of models with L,;, = 0.02 m, a — b = —0.004 = const, 1 = 10% x Mo-
(a) Model ML13, o = 2 x 10° (profile 3 in Figure 3c), & = 100/256 km, h/h* = 0.2. (b) Model
ML14, o = 2 x 10* (profile 2 in Figure 3c), & = 200/512 km, h/h* = 0.2. (c) Model ML9, o = 2 x
10% (profile 2 in Figure 3c), A = 100/256 km, h/h* = 0.2. (d) Model ML10, o = 2 x 107 (profile 2
in Figure 3c), » = 100/512 km, A/h* = 0.1. Slip horizons are extracted at constant seismogenic depth
(z = —10 km). Lines are drawn every 2 years.
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Figure 7. (a) Typical realization of a heterogeneous L distribution. (b) Response of model MP1 to the L
values shown in (a) with L € log(([0.005, 0.1]) m. (c) Model response of MP2 with different L,,.x, L €
log;0([0.005, 0.2]) m. Slip profiles are shown at z = —9 km. Parameters for Figures 7b and 7c are h/h* =
0.4, = 10" X Mo, a — b profile 2 from Figure 3. Lines are drawn every 2 years. Note the creeping

sections for larger L, in Figure 7c.

10° the pattern does not change significantly, suggesting
that irregular slip patterns are a result of a constant a — b
environment where instabilities are allowed to occur, and L
depth distributions reflecting fault zone structure. Figure 6d
displays the response of a system having the same param-
eter set that leads to solution 6¢ except nx and nz have been
doubled, thus reducing A/A* from 0.2 to 0.1 (MLIO in
Table 1). After the first few cycles the response develops a
quasiperiodic pattern, where two events of equal size at x =
25 km and 75 km alternate with a doublet at x = 0 km and
50 km, respectively.

[30] The resulting difference of models ML9 (Figure 6¢)
and ML10 (Figure 6d) illustrates again that we do not

converge with the employed grid to a unique underlying
solution on all scales of the response. However, the
persistence of the irregular slip patterns over 3 orders of
magnitudes in «, and similar amount of slip in the main
seismic events, indicate that these features represent
genuine aspects of the model response related to the
employed L distribution with depth. In addition to the
results shown in Figure 6, we investigated slip evolution
of a system with L,;, = 0.04 m (ML18-20 in Table 1).
For 7 = 100/256 km, a — b = —0.004 = const and o < 50
the simulations produce a stick-slip behavior over the
seismogenic depth section, whereas for o > 50 the entire
fault slips stably. Table 1 summarizes the sets of param-
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Table 2. Overview of Models With 2-D Chessboard L Distributions®

Number of Response
Model L Pattern Ly, m Ly, m a—b Patches  Xiength, KM Zgepm, km — nx nz  h/h* Type r X Figure
MP1 chessboard  0.005 0.1 profile 2 32 x4 200 24 1024 256 04 pattern - - 7
MP2  chessboard  0.005 0.2 profile 2 32 x 4 200 24 1024 256 04 pattern - - 7
MP3  chessboard  0.005 0.1 profile 2 8 x 1 200 24 1024 256 04 pattern  0.31 0.44 -
MP4  chessboard  0.005 0.1 profile 2 8 x 1 200 24 1024 256 04 pattern  0.33  0.42 9,10, 11
MP5  chessboard  0.005 0.1 profile 2 16 x 2 200 24 1024 256 04  pattern 047 0.22 9,10, 11,13
MP6  chessboard  0.005 0.1 profile 2 16 x 2 200 24 1024 256 04 pattern ~ 0.49 0.30 13
MP7  chessboard  0.005 0.1 profile 2 32 x 4 200 24 1024 256 04  pattern 1.01 0.25 13
MP8  chessboard  0.005 0.1 profile 2 32 x 4 200 24 1024 256 04 pattern  0.69 0.33 9,12, 13
MP9  chessboard  0.005 0.2 profile 2 32 x 4 200 24 1024 256 04 pattern ~ 1.07  0.05 12
MP10  chessboard ~ 0.005 0.1 profile2 64 x 8 200 24 1024 256 04  pattern 090 0.35 -
MP11  chessboard  0.005 0.1 profile2 64 x 8 200 24 1024 256 04  pattern 096 0.28 9,10, 11

*Profile 2 for a — b refers to Figure 3a.

eters employed in different numerical simulations and the
corresponding system response.

5. Heterogeneous L Distribution Along Strike
5.1. Typical Implementation Example

[31] In this section we explore slip evolutions of systems
with heterogeneous L distributions along strike and
depth. Field observations of fault traces in strike-slip
environments and laboratory measurements of fracture
surfaces show geometrical irregularity over many scale
lengths. A variety of multidisciplinary observations [Ben-
Zion and Sammis, 2003, and references therein] suggest
that the range of size scales of geometrical irregularities
decreases with the cumulative slip on a fault. Previous
numerical simulations indicate [Ben-Zion and Rice, 1995;
Ben-Zion, 1996; Zoller et al., 2005c] that the range of
size scales characterizing the fault heterogeneities can act
as an effective tuning parameter of the fault dynamics.
On the basis of the above observational and theoretical
results, 2-D L distributions with different ranges of size
scales may be used to represent faults at different
evolutionary stages [e.g., Wesnousky, 1994]. Geometrical
heterogeneity along the fault trace may also influence
the normal stress distribution, which in turn could give
rise to complex dynamics [Ben-Zion, 2001; Perfettini et al.,
2003]. However, here we examine effects associated with
heterogeneous distributions of L and adopt the traditional
assumption that the normal stress does not change with
slip. In the following sections we focus primarily on
general features associated with 2-D heterogeneous L
distributions. A systematic study of model realizations
representing faults at different evolutionary stages is left
for a future work.

[32] To obtain a basic understanding of the model
response, we begin with some cases that have chessboard
patterns of L values. A typical implementation example is
given in Figure 7a, where the 200 x 24 km? fault plane is
divided into 32 x 4 patches along strike and dip, respec-
tively, each consisting of 32 x 32 cells. The minimum
applied value for the critical slip distance L,;, is governed
by the spatial discretization of the computational grid. To
investigate the effect of different L., values, we divide
the interval 10g1o([Lmin, Lmax]) €qually into 32 x 4 = 128
values and randomly assign one L value to each cell of
a certain patch. We employ L., = 0.005 m, leading to
h/h* = 0.4 in patches having L.;, and smaller values in

all other patches. Since the 2-D L function in Figure 7a
has no particular depth dependence, we apply an a — b
profile that stabilizes fault slip at depth (Figure 3a,
profile 2). Figures 7b and 7c show slip profiles along
strike at z = —9 km with L € log;(([0.005, 0.1]) m and
L € logio([0.005, 0.2]) m, respectively (MP1, MP2 in
Table 2), applied to the pattern shown in Figure 7a. The
slip evolution in Figure 7c with a slightly broader range of
size scales shows somewhat a larger diversity of response.
However, the larger length scales that are present in the
distribution leading to Figure 7c produce a stabilizing
effect that lead to more creeping regions. In between
these creeping regions smaller slip events can be identified
creating nonstationary spatiotemporal slip pattern (e.g., at
x = 120-180 km). Because of the stabilizing effect of
Liax = 0.2 m, we employ in all subsequent models L &
log19([0.005, 0.1]) m to study the response to different
degrees of L heterogeneities.

5.2. Extracting a Catalog

[33] To describe seismicity on a fault with different
L distributions, we have to determine quantities that are
listed in typical earthquake catalogs. We extract a seismic
catalog from the continuously simulated slip velocities
generated by our numerical experiments using the following
criteria for a seismic event:

[34] 1. A numerical cell is considered to slip seismically
when its velocity is equal to or greater than a threshold
velocity, V'™, defined to be 103 or 10* times the load velocity
v

[35] 2. A compact zone of minimum 10-20 cells with
v > v is required to determine the smallest event size,
since we treat the system in the continuum limit. Note that
the diameter of the resulting patch (600—854 m) is smaller
than the dimension of the nucleation zone A* in places
where L is large (h* ~ 9.5 km for L = L,x = 0.1 m), but
comparable to #* where the critical slip distance is small
(h* =~ 480 m for L = L, = 0.005 m).

[36] 3. A seismic event ends if v < v** for all cells
involved.

[37] 4. The hypocenter is the cell location whose sliding
velocity satisfies first v > " at the onset of slip
instability.

[38] 5. The event size is measured by the scalar potency P
(sum of seismic slip times rupture area in [km*cm]) asso-
ciated with the seismic slip [Ben-Zion, 2003]. The
corresponding event magnitude is obtained by the empirical
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Figure 8. (a) Example evolution of maximum velocity as a function of simulated time for a typical
experiment, indicating load velocity v>° and two possible threshold velocities. (b) Blowup of seismically

active period between ¢ = 205 and ¢ = 220 years.

scaling relation of Ben-Zion and Zhu [2002] for events
larger than M} = 3.5

logo (P) = 1.34 M —5.22, (9)

where M is the local magnitude of California.

[39] Figure 8 shows maximum slip velocity as a function of
time on a model fault for a simulated interval of 250 years.
The three dashed lines indicate v> and threshold velocities
10° x v and 10* x v™, respectively. We tested several
realizations of slip zone sizes consisting of 10 and 20 cells as
well as other velocity thresholds and concluded that the
obtained statistics of model earthquakes are not very sensitive
to the precise choices of these parameters. Thus we will use a
minimum zone of 10 connected cells and v™ = 10° x v to
extract seismic events from our simulation data.

[40] In order to monitor the stress evolution on the fault,
we follow Ben-Zion et al. [2003a] by using several stress
functions related to seismicity and criticality. The average
stress on a fault, AS, tracks the evolution associated with the
remote loading:

1 N
AS(f) = — : 1
S0 = 2 o) (10)
where Ti(¢f) denotes stress at cell i and time ¢ and N is
the number of cells in the upper 15 km of the fault. The
standard deviation of stress, SD, is used to estimate the
range of stress fluctuations on the fault,

SD(t) = $ !

(11)

=]

> (ml)) = AS(0))*.
i=1

We calculate AS and SD for z > —15 km to exclude minor
stress variations in the stable sliding part of the model fault.
To test the hypothesis of accelerated seismic release prior to
large or system wide events, we monitor the cumulative
Benioff strain

(12)

where E; is the energy of the ith event and N(7) is the
number of events at time £. We compute the change in strain
energy according to Kostrov [1974]

1

where AT, z and 4 denote stress drop, mean slip and rupture
area, respectively. In addition, we calculate seismic
coupling, ¥, to measure the partition of strain release
between seismic and aseismic components,

seismic slip
= 14
total slip (14)

5.3. Model Results

[41] To compare slip evolutions for various degrees of
fault heterogeneity, we use four classes of 2-D L distribu-
tions (Figure 9) approximating different ranges of size
scales. Patterns P1—-P4 consists of 8 x 1, 16 x 2, 32 x 4
and 64 x 8 patches along strike and depth, respectively.
They are distributed on a numerical fault plane discretized
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Figure 9. Examples of heterogeneous L distributions on a typical 200 km x 24 km fault zone with nx =
1024, nz = 128, showing four model patterns P1—-P4 with different degrees of heterogeneity. (a) Model
MP4, 8 x 1 patches; (b) model MP5, 16 x 2 patches; (c) model MP8/MP9, 32 x 4 patches; and
(d) model MP11, 64 x 8 patches. If not specified otherwise, L € log;o([0.005, 0.1]) m.

into 1024 x 128 cells covering 200 km x 24 km. We
use the @ — b profile without a stable-unstable transition at
z = =3 km (Figure 3a, profile 2) to focus on effects due to
the variability in L across the fault. Values for L are
bounded by L.,;, = 0.005 m and L., = 0.1 m. Figure 10
compares basic properties of seismicity generated by
models MP4, MP5 and MP11 (Figures 9a, 9c, and 9d).
The histograms on the left panel display the number of
hypocenters as a function of L at the hypocenter location.
Clearly, earthquakes tend to nucleate in regions where L is
small. Most events nucleate where L is in the lower 25%
of the interval log;o([Lmin, Lmax]), because the nucleation
size h* = f{L) is small and fluctuations can grow unstable
more easily.

[42] The frequency size (FS) statistics demonstrate the
capability of the chosen approach to generate event sizes
over a broad range of magnitudes. For a reference we
plot the slope of FS statistics characterizing global
strike-slip events shallower than 50 km [Frohlich and
Davis, 1993]. The employed spatial discretization allows
for a minimum magnitude of M; = 3.8. This effect is
responsible for the curvature of data points at small
magnitudes generated by models MP5, MP11, whereas
finite size effects of the fault’s seismogenic width are
evident in the curvature at large magnitudes. However,
the more patches and L values are employed, the more
the simulated slope approaches the reference observed
one.

[43] Figure 10 (right) displays fundamental differences
in seismicity evolution. The responses to different realiza-
tions of L distributions reveal that larger heterogeneity
leads to a higher productivity of seismic events. With N
and ¢, being the number of generated events and simu-

lated time neglecting initial quiescence, respectively, the
seismicity rate

(15)

increases from the most homogeneous case (MP4,
Figure 10a) to the case of strongly heterogeneous (MP11,
Figure 10c) L distribution (see Table 2). The seismic
coupling x also scales with the number of imposed
L values, leading to 0.44/0.42, 0.30/0.22 and 0.35/0.28 for
two realizations for each of P1, P2, P4 (see Figure 9) model,
respectively. This indicates the tendency of faults with large-
scale irregularities to relieve slip deficits more seismically
than faults with small-scale irregularities (MP3—-MP6,
MP10-11 in Table 2).

[44] Common to all the seismicity evolutions is the quasi-
cyclic behavior where periods of quiescence alternate with
periods of clustered seismic activity. We observe that within
active periods regular patterns cannot be identified. Further-
more, no aftershock sequences occur in the generated
seismicity evolutions. Thus the present parameterization
and discretization of the model space is not sufficient to
produce all features of natural seismicity. However, future
simulations allowing for smaller events might be capable to
do so. Figure 11 shows the evolution of stress functions AS
and SD in response to MP4 (Figure 11a), MP5 (Figure 11b),
and MP11 (Figure 1lc). The average stress on faults
with large-scale heterogeneities (MP4) evolves in an irreg-
ular pattern of pronounced stress drops, accompanied by
corresponding strong signals in SD (Figure 1la). With
increasing degree of heterogeneity (MPS, MP11) the shape
of function AS approaches a more regular saw-tooth-like
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Figure 10. Statistics in response to L distributions of models (a) MP4 (8 x 1), (b) MP5 (32 x 4), and
(c) MP11 (64 x 8) shown in Figures 9a, 9b, and 9d. (left) Distribution of hypocenters as a function of L at
the hypocenter. (middle) FS statistics. (right) Seismicity evolution. Decrease of bar width in histograms
reflects finer discretization of the interval logo([Lmin, Lmax]) With increasing number of patches.

behavior (Figures 11b and 11c). The accompanying evolu-
tion of SD is interrupted by sharp fluctuations that are
less pronounced for larger heterogeneity (Figure llc).
Simultaneously, small-scale fluctuations of SD increase
significantly. Thus the evolution of AS and SD provide a
complementary view of the seismicity evolution shown in
Figure 10. In particular, the occurrence of large earthquakes
dominate large-scale fluctuations in AS, whereas the rate of
small events controls the small-scale features in SD. The
stress functions AS and SD in response to MP4, MP5 and
MP11 are comparable to the output of model F with realistic
dynamic weakening in Ben-Zion et al. [2003a]. In contrast,
the evolution of AS and SD in model FC of Ben-Zion et
al. [2003a] with zero critical dynamic weakening exhibit
highly irregular small-amplitude fluctuations. The present
implementation of heterogeneities in the continuum limit is

not sufficient to produce such highly fluctuating stress
functions. However, future implementations with broader
ranges of size scales may produce such results [Ben-Zion,
1996; Zoller et al., 2005c].

[45] In Figure 12 we compare results obtained by two
different simulations, using the same 32 x 4 L pattern
(Figure 9¢) but L ,.x = 0.1 m and L, = 0.2 m, respectively
(MP8, MP9 in Table 2). The number of hypocenters as a
function of L at the hypocenter location as well as the
obtained FS statistics (Figure 12a) show no significant
difference. However, the stress functions AS and SD differ
significantly for these two realizations. First, the average
stress of the model with L, = 0.1 m develops more
distinct stress drops comparable to those of models MPS
and MP11 (Figures 11b and 11c). The same L pattern with
Lax = 0.2 results in a higher temporal average of AS with
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Figure 11. Average stress (AS) and its standard deviation (SD) in the top 15 km of the fault. (a), (b) and

(c) Response to models MP4, MP5, MP11 shown in Figures 9a, 9b, and 9d, respectively.

less pronounced variabilities, developing a sinusoidal be-
havior. Second, the SD for L., = 0.1 m shows less
fluctuations in interseismic periods but more distinct signals
when large events occur (Figure 12c¢). For L, = 0.2 m, the
SD shows small-scale fluctuations at all times but less clear
deviations at large events. The temporal dependence of AS
and SD can be explained by the temporal distribution of
seismicity (Figure 12d). For L., = 0.1 m the quasiperiodic
evolution of seismicity matches the previously discussed
results with L, = 0.1 m (Figure 10). For L, = 0.2 m, the
periods of seismic quiescence are less pronounced, but
seismicity still occurs clustered in time.

[46] The critical point theory implies that large earth-
quakes are preceded by an increase in stress correlation in

the volume hosting the catastrophic event [e.g., Sornette
and Sammis, 1995; Zoller and Hainzl, 2002]. Larger stress
correlations are caused by an increased occurrence of
intermediate and moderate size earthquakes [Jaumé and
Sykes, 1999; Ben-Zion and Lyakhovsky, 2002]. According to
the critical point theory the cumulative Benioff strain, e,
deduced from our synthetic catalogs should follow a power
law increase prior to a large event [Bowman et al., 1998;
Sornette, 2002; Mora and Place, 2002]. An example of €
from a seismically active period is shown in Figure 12e. We
observe an increase of ¢ prior to a large event for both
models at = 376.3 years and ¢ = 351.3 years, respectively.
The quality of the data is at least comparable to the Loma
Prieta example of Bowman et al. [1998]. Other pre main
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Figure 12. Results of two simulations with identical L pattern (32 x 4 patches, Figure 9c). (left) Model
MPS8, L € log;o([0.005, 0.1]) m; (right) model MP9, L € log;¢([0.005, 0.2]) m. (a) Number of
hypocenters as a function of log;o(L) at the hypocenter and FS statistics. Temporal evolution of
(b) average stress (AS) and (c) standard deviation of stress (SD) in the top 15 km of the fault.
(d) Seismicity evolution. (¢) Cumulative Benioff strain release. Circles in Figures 12d and 12e¢ mark
corresponding large earthquakes.

15 of 23



B01403

HILLERS ET AL.: VARIATIONS IN THE CRITICAL SLIP DISTANCE

B01403

RN Ao

RN (R \
-124 _ ______ <X
-24

Depth [km] Depth [km] Depth [km]

0 Q
-12
-24

100 200

Distance along strike [km]

-
0 0.1

02 03 04 05 06 07 0.8

Depth [km] Depth [km] Depth [km]

100
Distance along strike [km]

Figure 13. Spatial distribution of hypocenters for two P2 models (16 x 2 patches), (a) MP5 and
(b) MP6 and two P3 models (32 x 4 patches), (d) MP7 and (¢) MP8. Grey patches denote regions where

Lissmall,ie., L € 10g10([Lmin> Limin T Lmax —

Lnin)/4]). This choice is motivated by histograms showing

the number of events as a function of L at the hypocenter (e.g., Figure 10, left). Most events nucleate in
the lower fourth of the L interval. (c) and (f) The spatial distribution of the coupling coefficient, x,
corresponds to seismicity displayed in Figures 13b and 13e, respectively. Dashed line in Figures 13a,
13b, 13d, and 13e marks lower bound of the seismogenic zone defined by a < b.

shock intervals (not shown) in response to heterogeneous
L distributions (P3, P4, Figures 9¢ and 9d) verify the general
trend of an increasing ¢ prior to large earthquakes. Models
with more homogeneous pattern (especially P1) show no
accelerated moment release. There, we could speak of
‘quiescence’ preceding large events. This demonstrates that
our model allows to look at features like accelerated moment
release. We leave, however, the discussion of detailed
functional dependence of accelerating energy release for
additional studies of future work.

[47] The results discussed so far are not controlled by
specific assignments of L € 10g,o([Lmin, Lmax]) to specific
chessboard pattern (8 x 1-64 x 8) but on the degree of
heterogeneity. Figure 13 illustrates this qualitatively, where
hypocenters at their actual location on the fault plane are
plotted for two realizations of each patch pattern (P2: MP5,
MP6; P3: MP7, MPS in Table 2). For clarity, we highlight
Only patches where L € IOgIO([Lmina Lmin + (Lmax - Lmin)/4])a
since most events nucleate in this interval (see histograms
in Figures 10 and 12). The seismicity in Figures 13a, 13b,
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(a) 8 x 1 patches .

log, (L) [m]

(b) 16 x 2

(c) 32x4

log, (L) [m]

(d) 64 x8

Figure 14. Mean (solid circles) and median (open circles) log;o(L) value at hypocenter locations as a
function of magnitude range plus/minus one standard deviation (mean, solid line; median, dotted line).
The data indicate that small earthquakes tend to nucleate at sites of relatively small L but large events
have their hypocenters in regions of large L. Data sets from two simulations of each model class (P1—P4,
Figures 14a—14d) have been stacked. Total number of earthquakes used are (a) 542, (b) 622, (c) 426, and
(d) 853. In the magnitude range, data point at, e.g., My = 4.5, contains events with 4 < M} < 5.

13d, and 13e appears to reflect the property distributions.
Hypocenters occur over the entire fault plane but most of
them are in regions of small L. Figures 13a and 13b
display a strong clustering above the ¢ — b induced
velocity weakening to strengthening transition at z =
—15 km in regions where L is small. For large-scale
heterogeneities, seismic coupling x shows a strong de-
pendence of seismic stress release on the underlying value
of the critical slip distance. Figure 13c displays strong
coupling where L is small. The first 25 km and last 10 km
along strike show large seismic coupling although there L
is not taken from the lower fourth of the interval.
Moderate size and large earthquakes nucleating there
contribute significantly to seismic stress release. Small
earthquakes nucleating below z = —12 km have no
influence on the x distribution. The spatial distribution of
x for a fault with small-scale heterogeneities (Figure 13f)
reflects the corresponding L distribution less strong
(Figure 13e, see Figure 9c). Regions of high activity do
not necessarily lead to a strong coupling (e.g., cluster in
Figure 13e at x = 60 km).

[48] Figure 14 plots the mean (and median) log;o(L) at
hypocenter locations as a function of magnitude range. The
data are compiled from two simulations of patch discretiza-
tion (P1-P4) and are stacked to one graph for clarity. We
identify a trend, which becomes more significant the finer
the discretization of the L distribution is, that small
earthquakes tend to nucleate at sites of relatively small
L, whereas large events have their hypocenters in regions
of large L. We conclude that the size of nucleation zone
(h*) tend to differ between small and large events,
because h* oc L (equation (7)) at depth sections where
0e, a and b are constant (—2.5 km > z > —14 km). A
likely interpretation of this result is that the growth of
unstable small regions can be arrested by small scale
unfavorable 0 states in their vicinity. On the other hand,
accelerating large regions tend to continue to grow into
large slip events despite small-scale fluctuations in 6.
The results are thus compatible with an overall positive
correlation between the size of the nucleation zone and
the final size of the earthquake. The statistical relevance
of the correlation can be questioned, since we analyze
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only two models for each degree of heterogeneity.
However, the results are likely to be representative since
each of the two realizations shows the same trend.

[49] Figure 15 illustrates that even high contrasts at patch
boundaries of L patterns (P1—P4) do not cause discontinu-
ities in slip maps. This reflects the smooth character of the
underlying continuous solution. The modeled slip distribu-
tions from large events (M} > 6) are comparable to slip
distributions compiled from real earthquakes (http://
www.seismo.ethz.ch/srcmod). The visual similarity vali-
dates the applicability of the chosen approach to study
mechanisms responsible for observed features of natural
seismicity. Future work will focus on the evaluation of
statistical properties of synthetic slip maps to quantify
the similarity to natural seismic events [Mai and Beroza,
20001].

6. Hybrid Model

[s0] A third type of 2-D L distributions combines the
approaches used in previous sections. In particular, we link
the depth-dependent L profile from section 4 with the
chessboard pattern from section 5. Therefore the general
structure of a shear zone with depth (section 3) in addition
to geometrical heterogeneity along the fault (section 5)
are both treated. Figure 16a (left) shows a heterogeneous
L distribution along strike at seismogenic depth (—3 km >
z > —15 km) with L € log;(([0.005, 0.1]) m. Above and
below this zone L is homogeneous along strike and
increases t0 Ligp, Ligm, With Ly = 0.005 m and o = 10°
(MHI in Table 3). The results shown are obtained with an
a — b profile that stabilizes the fault at depth but is velocity
weakening in the topmost part of the fault (Figure 3a,
profile 2). Note that L influences the response only at z >
—18 km. At greater depths » = 0 and hence L cannot
control the evolution of p anymore (see Figure 1 and
equation (2)). The corresponding hypocenter locations
(Figure 16b) show an even stronger clustering than those
for the simpler chessboard models (Figures 13d and 13e).
The hypocenter locations as a function of L follow the
same trend as those generated by models without the
particular L depth dependence (Figure 16c). Most events
nucleate at sites where L is relatively small. In contrast to
previous simulations, all events nucleate in regions where
L is smaller than 0.02 m (inferred from Figure 16¢). The
FS statistics have a relatively large “b value” representing a
high ratio of small to large earthquakes. The simulated
maximum and mean magnitude of My = 6.8 and M} = 4.7,
respectively, are significantly smaller than those obtained
with simpler chessboard patterns.

[5s1] A number of evidence imply an increase in complex
seismic response: (1) A higher rate (» = 1.05 events/year);
(2) the stress function AS exhibits a less pronounced saw-
tooth-like temporal evolution, with moderate oscillations
around a relatively high temporal stress average (4.6 MPa
>~ 4.3 MPa, Figures 16d and 1la—11c); (3) the stress
fluctuations are persistent in time due to high seismic
activity (deviations from a background level are relatively
small (SD, Figure 16e)); and (4) the seismicity evolution
reveals a less distinct differentiation between quiescence
and seismically active periods. In general, magnitudes are
smaller than M; = 6.5.
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[52] Although the seismic productivity is somewhat higher
than in the models without depth-dependent L, the seismic
coupling is significantly smaller, x = 0.01. Most of the events
are small and only a few larger slip instabilities occur, which is
reflected in the relatively large slope of the FS statistics. We
performed an additional simulation employing the same L
pattern with @ — b= —0.004 = const (MH2 in Table 3), but the
resulting characteristics of model seismicity remain un-
changed. Thus the solution is less sensitive to the a — b
profile when the applied L distribution increases below the
seismogenic zone, although for profile 2 in Figure 3a L
does not influence the response at z < —18 km.

[s3] Figure 16 (right) displays the response for hybrid
model MH3. The 12 km deep seismogenic depth section
is divided into 64 x 4 patches, L € log;¢([0.005, 0.1 m]).
As in MHI, we use o = 10° to determine Liop> Litm
(Figure 16a). We keep a — b constant, as in MH2. The
hypocenter locations are highly localized in regions where
L < 0.008 m. The map view of Figure 16b and the
histogram in Figure 16c¢ reveal this strong clustering. Thus
increased geometrical complexity of the critical slip dis-
tance leads to less distributed nucleation zones. Moreover,
the slope of generated FS statistics is comparable to the
mean strike-slip fault value of —0.75, although the largest
earthquake has a magnitude of only M| = 5.8. The stress
functions AS and SD (Figures 16d and 16e) can be
compared to those generated by the discrete model FC
of Ben-Zion et al. [2003a], developing small-amplitude
fluctuations around the temporal average. Finally, the
temporal seismicity evolution (Figure 16f) shows that the
model produces a continuous stream of small earthquakes
around M; = 4. There is no periodicity in seismicity
evolution, i.e., the fault slips in a relatively stable fashion
without generating large events. The seismicity pattern
prior to ¢ = 400 years appears to be slightly different
compared to ¢ > 400 years illustrating the systems’
departure from the influence of initial conditions.

[54] Whereas the differences between the property distri-
butions P3, P4 and MH1, MH3 are related (doubling the
number of L patches), the differences of responses are more
pronounced between MH1 and MH3. MH1 and MH2
generate statistical similar results (see Table 3). The funda-
mental change from MH1 to MH3 is primarily due to the
increase in structural heterogeneity and only secondary
related to changes in a — b at depth.

7. Discussion and Conclusions

[55] Previous works have shown that fault models
belonging to the continuum class with relatively homo-
geneous frictional properties [75se and Rice, 1986; Rice,
1993; Ben-Zion and Rice, 1997; Lapusta et al., 2000] do
not produce in general slip events over a broad range of
magnitudes. Cochard and Madariaga [1996], Nielsen et
al. [2000] and Shaw and Rice [2000] confirmed that
generation of slip complexity on a homogeneous fault
requires special choices of constitutive and model parame-
ters. As summarized by Ben-Zion [2001], those choices
involve several properties that are not general characteristics
of available lab data, including very large strength drop
behind the rupture front followed by rapid dynamic healing,
constitutive laws with several weakening mechanisms that
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Figure 16. (left) Response to model MH1, (a) 2-D depth-dependent L distribution, 32 x 2 patches

between z = —3 and z = —15 km; a — b profile 2 of Figure 3a. (right) Response to model MH3, 2-D
depth-dependent L distribution (Figure 16a), 64 x 4 patches between z = —3 and z = —15km; a — b =
—0.004 = const. For both models, L, = 0.005 m, o = 10°. (b) Spatial distribution of hypocenters.
(c) Hypocenter location as a function of L and resulting FS statistics. (d) Average stress AS. (e) Standard
deviation of stress, SD, in the top 15 km. (f) Temporal seismicity evolution.
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Table 3. Overview of Models Using Hybrid L Distributions®

Model Number Xiengths Zdepths Response

Name L Pattern L, m Q a—b of Patches km km nx nz h/h* Type r X Figure
MH1 hybrid 0.005 10> profile 2 32 x2 200 24 1024 256 04 pattern 1.05  0.01 16
MH2 hybrid 0.005 10° const 32 x2 200 24 1024 256 04 pattern 0.84  0.01 -
MH3 hybrid 0.005 103 const 64 x 4 200 24 1024 256 0.4 pattern 0.37  <0.01 16

*Profile 2 for a — b refers to Figure 3a.

are tuned to produce separate event populations in different
size ranges, and/or saturation of the growth of stress
concentrations with rupture size. Lapusta et al. [2000]
simulated small events prior to large ones in a continuum
model with RS friction, but those are a direct consequence
of the @ — b transition zone at z = —15 km (see Lapusta et
al.’s Figure 6). Hirose and Hirahara [2002] generated
complex slip behavior by placing in a 3-D continuous
subduction zone model asperities that produce slip hetero-
geneities. Liu and Rice [2005] demonstrated with a 3-D
quasi-dynamic subduction model in the continuum limit
that small variations in a and b along strike can produce
nonuniform spatiotemporal slip response. This indicates, in
agreement with previous works [Ben-Zion and Rice, 1995;
Rice and Ben-Zion, 1996], that some degree of spatial
heterogeneity in continuum models is required to produce
spatiotemporal complex seismic behavior.

[56] In contrast to the above continuum models, a wide
variety of discrete models, with built-in strong heterogene-
ities associated with the model discreteness, were shown to
produce generic slip complexities over broad ranges of
scales [Burridge and Knopoff, 1967; Langer et al., 1996;
Carlson and Langer, 1989a, 1989b; Carlson et al., 1991;
Bak et al., 1987, 1988; Bak and Tang, 1989; Ito and
Matsuzaki, 1990; Lomnitz-Adler, 1993; Ben-Zion, 1996;
Zéller et al., 2005b, 2005c; Dahmen et al., 1998]. It has
been argued that fault segments that are geometrically
discontinuous may be represented approximately by the
discrete numerical elements [Ben-Zion and Rice, 1993;
Rice and Ben-Zion, 1996; Ben-Zion, 2001]. The inherent
discreteness in those models allows the elements to fail
independently in small earthquakes, while cascades of
failures of a number of elements produce moderate and
large events. Ben-Zion [1996], Ben-Zion et al. [2003a],
and Zoller et al. [2005¢] suggested that the degree of fault
heterogeneities may act as a tuning parameter for the fault
dynamics.

[57] In this study we developed a model that represents
fault zone heterogeneity by variations of the critical slip
distance L of rate- and state-dependent friction [Dieterich,
1979; Ruina, 1983; Rice, 1993; Ben-Zion, 2003], and a
procedure for extracting seismic catalog from continuous
fault slip data. We explored basic effects of structural
irregularities and topology of fault surfaces by performing
systematic simulations of a quasi-dynamic continuum
model of a 2-D strike-slip fault with heterogeneous distri-
butions of L. The incorporation of spatially heterogeneous
distribution of the L parameter allows us to produce realistic
slip and stress complexities within the continuum class of
models. This bridges the gap between previous works
associated with the smooth continuum and inherently dis-
crete models. The results support previous conclusions on
the dominant roles of fault heterogeneities on the simulated
response, and the suggestion that they may act as a tuning

parameter of the dynamics. We note that stronger forms of
heterogeneities associated with fault discreteness may be
needed [Zdller et al., 2005a, 2005b] to produce additional
realistic features of seismicity in a single fault zone such as
aftershocks and accelerated seismic release. A full treatment
of such features requires a modeling approach that accounts
for a regional response with many interacting faults [e.g.,
Ben-Zion and Lyakhovsky, 2002, 2006].

[58] The cases examined in this work involve three sets of
realizations: (1) homogeneous L distributions along strike
but realistic depth variations constrained by shear zone
structure; (2) chessboard-like 2-D pattern with different
length scales of irregularity; and (3) a hybrid approach
combining the first two implementation types. We observe
the following trends and response characteristics:

[59] 1. Our calculated response for a standard model with
frictional properties corresponding to fairly homogeneous
faults agrees generally with previous studies. Here ¢ — b
follows a depth dependent profile and the critical slip
distance L is constant throughout the plane. We generated
several models where we keep a — b < 0 = const (unstable),
while using a depth-dependent L profile. This parameteri-
zation was shown to produce similar space-time stick-slip
pattern to that simulated in the past with variable a — b
profiles. For a > 10%, a scaling factor to determine Ly
and L, the model generates irregular spatiotemporal slip
patterns. Although details are controlled by specific
model dimensions and chosen discretizations of the
numerical implementation, the general features are robust
(see Table 1).

[60] 2. A fault with heterogeneous 2-D L distributions
produces a broad range of event sizes. Regions with small L
values are more likely to have a hypocenter. The seismicity
rate increases when the fault is divided into smaller patches.
On fairly homogeneous faults, large-scale average stress
fluctuations are significant. Relatively heterogeneous cases
produce pronounced small-scale stress fluctuations (see
Table 2). We observe a trend of an increasing seismic strain
release prior to large earthquakes, in general agreement with
the critical point theory. For fairly homogeneous faults, the
spatial seismic coupling correlates with regions where L is
relatively small. This correspondence is less pronounced for
geometrically disordered surfaces. Example maps of final
slip of simulated events show properties similar to those
observed of natural strike-slip earthquakes.

[61] 3. The hybrid approach affirms the stabilizing effect
of large L values at depth, since models with either depth-
dependent or constant ¢ — b distributions produce qualita-
tively comparable results. However, example simulation of
a fairly heterogeneous fault produces different statistical
properties of the seismicity than less heterogeneous realiza-
tions (see Table 3).

[62] The mean L at the hypocenter and hence the size of
the nucleation zone of large earthquakes differ from those of
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small and moderate events for all cases studied (Figure 14).
For more homogeneous faults the signal is less monotonous,
but nevertheless reveals a trend that nucleation size corre-
lates with the event size. Although the relation between the
nucleation size and corresponding seismic nucleation
phases can depend on additional factors, these results may
serve as a contribution to the debate on whether small and
large earthquakes show comparable or different initial
seismic stages. As Lapusta and Rice [2003] demonstrated,
small and large model events on a smooth fault plane can
exhibit the same nucleation phase. In contrast, our simu-
lations with heterogeneous faults suggest that small and
larger events are associated, statistically, with different
nucleation sizes. fio [1995], Ellsworth and Beroza [1995],
and Beroza and Ellsworth [1996] argued that the seismic
nucleation phases of earthquakes scale with the size of the
events. However, other studies showed opposite or no such
scaling [Anderson and Chen, 1995; Mori and Kanamori,
1996]. Although we do not compute these phases in detail,
the increase toward larger L values at hypocenters of large
events suggests a statistical scaling between the nucleation
phases and the final size of an event. Maps that show spatially
averaged sizes of nucleation zones may provide additional
information on hypocenter locations (as shown in Figures 13a,
13b, 13d, and 13e). However, this is beyond the scope of the
current investigation and is left for future work.

[63] The simulated slip maps (Figure 15) provide an
opportunity to compare their statistical properties, such as
hypocenter location with respect to high-slip regions [Mai et
al., 2005], to those of past recorded earthquakes compiled
by P. M. Mai (A database of finite source rupture models,
2004, available at http://www.seismo.ethz.ch/srcmod).
Systematic comparisons between observed and simulated
slip histories, combined with comparisons of observed
and simulated earthquake catalogs, may be used to invert
for the underlying fault properties such as L distributions
along given fault sections. This can lead to an improved
understanding of the physical features that are responsible
for various aspects of observed earthquake patterns.
Future work will focus on effects generated by more
realistic 2-D L distributions with statistical properties
compatible with observations associated with natural fault
zones at different evolutionary stages. The generated slip
maps and other simulated results may serve as a starting
point for estimating ground motion and probabilistic
seismic hazard associated with various faults.
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