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Abstract We demonstrate the feasibility of detecting very weak deformation in the shallow crust with high
temporal resolution by monitoring the relative changes in seismic wave velocity (dv/v) using dense arrays of
seismometers. We show that the dv/v variations are consistent between independent measurements from
two seismic arrays. Dominant peaks in the observed dv/v spectrum suggest that tides and temperature
changes are the major causes of daily and subdaily velocity changes, in accordance with theoretical strain
modeling. Our analysis illustrates that dv/v perturbations of the order of 10�4, corresponding to crustal strain
changes of the order of 10�8, can be measured from ambient seismic noise with a temporal resolution of 1 hr.
This represents a low-cost technique for high precision and high time-resolution monitoring of crustal
deformation that is complementary to existing geodetic measurements and is instrumental in both the
detection and understanding of low-amplitude precursory processes of natural catastrophic events.

Plain Language Summary Theoretical and laboratory studies have shown that the onset of
earthquakes, landslides, and volcanic eruptions is often preceded by a so-called initiation phase. Detecting
such a precursory phenomenon will help in the prediction, early warning, or assessment of catastrophic
geological events. The time scale and amplitude of these precursory evolutions are not well known, however,
and their detection and characterization require monitoring techniques with both high precision and high
temporal resolution. We present here an approach to monitor the elastic properties of crustal rocks using
continuous recordings of ambient seismic noise by networks of dense autonomous sensors. We show that
this technique allows the monitoring at a temporal resolution of 1 hr for crustal strain variations
of the order of 10�8, namely, the deformation associated with tides. This technique can be used in concert
with existing geodetic techniques for understanding and detecting transient crustal deformation.

1. Introduction

Theoretical models and observational evidence suggest that the onset of instabilities responsible for
earthquakes, landslides, and volcanic eruptions is often preceded by slowly evolving, low-amplitude
initiation phases (Bouchon et al., 2011; Brenguier, Campillo, et al., 2008; Johnson & Jia, 2005; Scuderi et al.,
2016; Tape et al., 2018). Both high temporal resolution and high precision measurement of crustal deforma-
tion are therefore crucial for hazard prediction and early warning.

Strain in the shallow subsurface can be inferred from geodetic data (e.g., Global Positioning System [GPS] and
interferometric synthetic aperture radar [InSAR]) and other surface measurements (such as strainmeters or
tiltmeters), or, alternatively, from relative variations in seismic wave velocity (dv/v) if data from dense
seismograph arrays are available. Seismic velocity is sensitive to, for instance, strain associated with the
closure or opening of cracks (Walsh, 1965). Traditional approaches to quantifying dv/v at subdaily time scales
are limited by the need of repeating sources (Reasenberg & Aki, 1974; Yamamura et al., 2003; Wang, Zhu, et
al., 2008). Here we demonstrate that temporal changes of dv/v can be detected and monitored with hourly
resolution using continuous records of ambient seismic noise.

One can infer dv/v from time delays in the coda of the approximate Green’s functions that are estimated from
noise correlation at different times. This approach, which has been applied to various problems in
geosciences (Brenguier et al., 2014; Brenguier, Campillo, et al., 2008; Brenguier, Shapiro, et al., 2008;
Donaldson et al., 2017; Froment et al., 2013; Hillers, Retailleau, et al., 2015; Mordret et al., 2016; Olivier
et al., 2015; Richter et al., 2014; Rivet et al., 2011; Sens-Schönfelder & Wegler, 2006; Wang et al., 2017), has
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several advantages. First, the scattered seismic (coda) waves convey information about the average elastic
properties of the subsurface volumes that they sample and are less affected by local heterogeneities
compared with point measurements at Earth’s surface. Second, it can be done continuously and at low
costs, which is essential for long-term observation and monitoring of solid Earth. Furthermore, multiply
scattered coda waves have a high sensitivity to changes in elastic properties in the shallow crust,
providing a precision that is comparable to measurements from expensive active-source experiments.

Notwithstanding these advantages and the wide applicability, the noise-based monitoring of crustal strain
still faces substantial challenges. The first is technical. Previous attempts with natural seismic noise involved
stacking over long time windows in order to obtain a sufficient signal-to-noise ratio (Hillers, Ben-Zion, et al.,
2015; Richter et al., 2014; Takano et al., 2014). The best temporal resolution achieved previously was ~1 day
(Hadziioannou et al., 2011; Stehly et al., 2015) for monitoring of natural events. In many potential applications,
such as prediction, early warning, or assessment of natural hazards, it is important to be able to detect
changes on shorter time scales (e.g., a few hours or less). We achieve this by taking advantage of the newly
available dense arrays of autonomous seismometers.

The second challenge concerns quantification and interpretation. Real-time change in seismic velocity is a rela-
tively new type of observation, yet its relationship to strain has not been well established. Its multiple origins
include tectonic deformation, water content perturbation, and temperature change, and isolating the effects
of each mechanism is not easy. We meet this challenge by measuring the in situ responses of dv/v to reason-
ably well understood external forcings. By measuring the seismic velocity responses to predictable periodic
strain (such as tides and solar heating) one can provide real-time information about the state of crustal rocks.

With seismic data from dense arrays at Piton de la Fournaise (PdF) volcano, La Réunion (Figure 1), we demon-
strate that we can probe shallow crustal strain of the order of 10�8 at approximately hourly resolution and
that at this site the inferred daily and subdaily variations in dv/v are due to tidal and thermal effects. Fine pre-
cision, high temporal resolution, and low costs together provide new possibilities for monitoring of geologi-
cal processes in the shallow subsurface.

2. Data and Methods
2.1. The VolcArray Experiment

We use the seismic data from the VolcArray Experiment (Brenguier et al., 2016; Nakata et al., 2016) at PdF, La
Réunion (Figure 1), which is one of the most active and best-instrumented volcanoes in the world. VolcArray

Figure 1. (a) Locations of La Réunion Island (inset) and Piton de la Fournaise volcano on La Réunion. (b) Locations of the receivers of the VolcArray seismic arrays
(orange dots), the very broadband seismometer (red triangle), borehole tiltmeters (blue squares), the precipitation stations (yellow diamonds), and the meteorolo-
gical station (green circle).
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comprised three arrays that were placed a few kilometers from the Dolomieu crater and recorded ground
motion continuously through July 2014, a quiet period of PdF. Each array had vertical component geo-
phones (10-Hz corner frequency, 250-Hz sampling rate) on a 7 by 7 grid, with an average grid spacing of
about 80 m and an aperture of about 0.5 km. The data from Arrays A and B are of high quality. However,
the data quality for Array C is not sufficient for the purpose of this study, possibly because the sensors were
not placed vertically due to the tough terrain and the bad weather condition on the day of deployment (as
manifested by the irregular geometry of Array C), or because the sensors were not well coupled with the
edifice due to the voids underneath Array C from lava flows south of the crater. In this paper we use data
from Arrays A and B.

2.2. Noise-Based Monitoring of Seismic Velocity

Noise-based monitoring takes advantage of the possibility to estimate the Green’s function, the seismic
response to impulse source of the medium, by calculating cross correlations of ambient seismic noise
recorded at two receivers (Campillo & Paul, 2003; Sabra et al., 2005; Shapiro & Campillo, 2004). The coda of
these Green’s functions is highly sensitive to small changes in the elastic properties of the medium
(Poupinet et al., 1984; Snieder et al., 2002), and continuous Green’s function reconstruction can be used to
measure relative changes in arrival time (dt/t) of wave components, which yields dv/v.

We calculate the hourly noise cross correlations using preprocessing similar to Brenguier, Campillo, et al.
(2008); that is, we down-sample the continuous noise data to 50 Hz and apply spectral whitening in the
Fourier domain. Green’s functions are then reconstructed by computing cross correlations for all of the sta-
tion pairs within each array using the hourly noise data. We apply a two-dimensional Wiener filter to enhance
the signal-to-noise ratio, with a filter order of 3 for both vertical (hour) and horizontal (time lag) dimensions
(Wang, Tilmann, et al., 2008; Moreau et al., 2017) (see the supporting information). For each receiver pair, a
reference cross-correlation function is obtained by stacking cross correlations for that pair over the entire
study period. To calculate traveltime changes, we applied the Moving-Window Cross-Spectral Analysis
(MWCSA; Clarke et al., 2011; Poupinet et al., 1984) to the coda in a 4- to 25-s window with high frequency
1–5 Hz of the reconstructed Green’s functions. The relative wave velocity change is the opposite of the tra-
veltime perturbation (dv/v =�dt/t). Errors in dv/vmeasurements are estimated followingWeaver et al. (2011).

2.3. Simulations of Tide-Induced Strain

We simulated the tide-induced volumetric strain at PdF using the SPOTL program (Agnew, 2012). The simula-
tions incorporate both the solid Earth tide and the ocean tidal loading. To compute the ocean tide, we use the
global model osu.tpxo72atlas.2011 (Egbert & Erofeeva, 2002), with cell size of 0.125°, which is a hydrodynamic
model assimilated with altimetry data. The east-west and north-south horizontal strain components are inde-
pendently computed. Assuming a traction-free half space, the vertical strain component at the surface is then
determined by the two horizontal components by εzz = ζ(εxx + εyy), where ζ =�ν/(1� ν) =�1/3 with Poisson’s
ratio ν = 1/4. The total tide-induced volumetric strain is the sum of the vertical strain and horizontal strain.

3. Results
3.1. Temporal Variations of dv/v

The time series of dv/v averaged over the 1,225 station pairs are shown in Figure 2a. The measurements
reveal relatively large variations (~0.05%) on time scales of days or weeks and smaller variations (~0.01%)
on time scales of a day or less. The long-term changes could be associated with aseismic volcanic activity
or precipitation (Figure 2b; Rivet et al., 2015). The daily and subdaily changes in dv/v are the major focus of
this study.

A comparison of the yellow and blue lines in Figure 2a shows that the independent measurements from
Arrays A and B match each other well for both long-term and short-term dv/v variations. We note that no
major volcanic activity was recorded for PdF during this period, and we find no obvious dv/v correspondence
to the three seismic events with magnitudes >2 that occurred in this time window (two M 2–3, one M 3.4).

3.2. Spectral Content of Daily and Subdaily Changes in dv/v

The spectral content of dv/v changes with time, but the spectrogram (Figure 2c) of dv/v in array B reveals dis-
tinct high-energy peaks at or near diurnal (1 cycle per day), semidiurnal (2 cycles per day), and terdiurnal
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(3 cycles per day) frequencies. Calculation of the spectrum for the study period (analogous to stacking the
spectrogram along the time axis in Figure 2c) enhances the peaks that correspond to the diurnal,
semidiurnal, and terdiurnal frequencies (Figure 3a). To ensure that these spectral characteristics are robust
and not related to spatiotemporal changes in the noise, we verify that the spectrum of the noise intensity
(in 1- to 5-Hz frequency range as used in the MWCSA) does not show similar peaks (Figure S2).

Our measurements are stable for several reasons. First, the seismic coda recovered by cross correlation
consists of multiply scattered waves and is much less sensitive than direct waves to directional changes in
noise source distribution (Colombi et al., 2014; Hadziioannou et al., 2009). Second, averaging over station
pairs at various azimuths helps reduce the potential bias in arrival times from reconstructed Green’s functions
due to uneven noise distribution. Indeed, we select groups of station pairs according to their azimuths and
confirm that the dv/v measured over the study period is independent of the azimuth (Figure S3). Finally,
the method that we use to infer arrival time changes (i.e., MWCSA) is based on phase measurements and
is therefore not susceptible to changes in the noise amplitude spectrum (Zhan et al., 2013).

Figure 2. (a) The time series of relative seismic velocity changes (dv/v). The yellow line shows the average over 1225 station
pairs of Array A from 1st to 27th July 2014, and the blue line shows the average of Array B from 3rd to 28th July 2014.
The error of dv/v is indicated by grey shadow, which is about 1 order of magnitude smaller than dv/v itself. Within error the
dv/v measurements from the two arrays are similar. (b) The precipitation at three stations FERI, FORX, and SFRI
(Figure 1b) around the Dolomieu crater and their average. (c) The spectrogram of dv/v from Array B (corresponding to the
time series in blue line in Figure 2a). Note the high-energy peaks at or near diurnal (1 cycle/day), semidiurnal (2 cycle/day),
and terdiurnal (3 cycle/day) frequencies.
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These observations suggest that the short-term changes and spectral characteristics (Figure 3a) of the
obtained dv/v are not caused by spatiotemporal changes in the noise wavefield but by actual deformation
of the shallow crust underneath the seismic arrays.

3.3. Possible Causes of Daily and Subdaily Variations in dv/v

At these frequencies (i.e., several cycles per day) prominent deformation in the shallow crust is caused by
external forcings due to tides and solar radiation. First, the differential gravitational fields of the Moon, the
Sun, and other celestial bodies result in the tidal deformation, comprising solid earth tides and ocean tide
loading. Second, solar radiation causes daily temperature changes, inducing thermoelastic strain in the crust
as well as variations in atmospheric pressure. On the one hand, the spatiotemporally varying temperature
fields cause thermoelastic strain, which is larger in areas with extreme local topography and lateral material
heterogeneity (Ben-Zion & Leary, 1986). Although the temperature changes themselves only penetrate tens
to hundreds of centimeters into the crust, the thermoelastic strain can extend deeper (Berger, 1975; Ben-Zion
& Leary, 1986; Tsai, 2011). On the other hand, the temperature-induced perturbations of atmospheric loading
also lead to strain in the Earth.

Figure 3. The spectra of five different types of data. From the top to the bottom are the spectra of (a) dv/v, (b) tidal volu-
metric strain modeled by SPOTL, (c) temperature records, (d) vertical acceleration records from the very broadband
seismometer RER (Figure 1b), and (e) tilts from station PARI and ENCI (Figure 1b).

10.1029/2018GL079944Geophysical Research Letters

MAO ET AL. 132



To evaluate the imprints of tidal and thermal deformation on dv/v, in Figure 3 we compare dv/v (Figure 3a)
with independent observations and modeling results. First, Figure 3b depicts simulations of tide-induced
volumetric strains at PdF using the SPOTL program (Agnew, 2012). The main spectral peaks in Figure 3b
are smooth and relatively broad because of the rich frequency constituents of tides (Melchior, 1974) and
because the spectrum is computed over a finite time window. The modeled tidal spectrum reveals the
well-known strong diurnal and semidiurnal peaks, with the latter larger than the former, and a weak
terdiurnal peak.

Second, in Figure 3c we illustrate thermal effects by means of hourly temperature records from the nearby
meteorological station at Plaine des Cafres (Figure 1b). The periodicity of solar heating is close to 1 day. As
the shape of temperature change is not perfectly sinusoidal, its Fourier transform shows spikes at 1 cycle
per day as well as higher order harmonics at 2, 3, 4, … cycles per day. In contrast to the tidal spectrum, in
the temperature spectrum the diurnal thermal peak is larger than the semidiurnal thermal peak and the ter-
diurnal thermal peak is comparable to the first two peaks.

Finally, for comparison with our array estimates of dv/v, we display two other measures of ground deforma-
tion. In Figure 3d we display the spectrum of vertical acceleration from a very broadband STS-1 seismometer
at GEOSCOPE station RER (Figure 1b). We note that at long periods the seismometer records both transla-
tional and rotational motions (Pillet & Virieux, 2007). In Figure 3e we use data from two borehole tiltmeters
(PARI and ENCI) that are close to Arrays A and B (Figure 1b) and show the average spectra from horizontal
pendulums at these stations.

All of the spectra in Figure 3 have prominent diurnal, semidiurnal, and terdiurnal peaks. Comparing the tidal
and thermal spectra (Figures 3b and 3c) we notice that the diurnal and semidiurnal peaks, respectively, over-
lap, whereas the terdiurnal peaks occur at different frequencies. The other spectra—dv/v (Figure 3a), very
broadband seismometer (Figure 3d), and tilt (Figure 3e)—seem to be affected by a combination of tidal
and thermal effects, but the relative amplitudes depend on the frequency band. In the following we assess
the contributions of tidal and thermal effects on dv/v and crustal strain.

3.4. Tidal and Thermal Effects on dv/v
3.4.1. Terdiurnal
The tide model shows a peak at a frequency (2.87 cycles per day, tidal constituent M3) that differs substan-
tially from the thermal signal (3 cycles per day) and which is much weaker than the peaks at 1 cycle per
day and 2 cycles per day (Figure 3b). Well-defined terdiurnal peaks in the dv/v (Figure 3a) and tilt spectra
(Figure 3e) coincide with the thermal peak at 3 cycles per day. These observations combine to suggest that
the terdiurnal variations in dv/v are primarily due to thermal effects.
3.4.2. Semidiurnal
The semidiurnal dv/v and tilt peaks occur closer to the main tidal peak (just below 2 cycles per day) than the
thermal peak (2 cycles per day). Furthermore, the time series (Figure 4a) shows that dv/v and tidal model (fil-
tered in the semidiurnal band) are nearly in phase, which is only likely to happen if the dv/v is dominated by
semidiurnal tide and if the relaxation time of dv/v in response to strain change is considerably shorter than
semidiurnal period (see the supporting information). The phase relationship between dv/v and
temperature-induced strain remains unknown, because neither the phase difference between temperature
at themeteorological station and at the seismic array, nor the phase delay between temperature and thermo-
elastic strain, nor the phase of atmospheric pressure at the location of the VolcArray, are known. That said, the
phase alignment with tides and the superior match of the semidiurnal spectral peaks suggests that the semi-
diurnal variations in dv/v are mainly of a tidal origin.
3.4.3. Diurnal
The main diurnal spectral peaks of dv/v, tidal, thermal, and tilt overlap. Upon closer inspection, however, we
note that the tilt spectrum peaks at 1 cycle per day (i.e., at the thermal peak) whereas the dv/v peak falls in
between the main tidal (and thermal) peak close to 1 cycle per day and a smaller tidal peak at slightly lower
frequency. Time-domain filtering in the diurnal band reveals a substantial phase difference between dv/v and
the tidal model (Figure 4b), although we cannot determine the phase difference between dv/v and thermal
strain. This phase relationship indicates that the diurnal dv/v is not dominated by tides. With the caveat of the
complex shapes of and relationships between the dv/v, tides, and temperature spectra, the daily variations in
dv/v are most likely due to a superposition of tidal and thermal effects, perhaps dominated by the latter.

10.1029/2018GL079944Geophysical Research Letters

MAO ET AL. 133



4. Discussions
4.1. Relative Magnitudes of Tide-Induced and Temperature-Induced Strain

The above observations suggest that both tides and solar radiation influence dv/v and that the relative effects
depend on frequency: thermal effects dominate in the terdiurnal band, tides in the semidiurnal band, and
both temperature and tides influence dv/v in the diurnal band. To understand the implications for crustal
strain, we estimate here the tide-induced and temperature-induced strains and compare their relative mag-
nitudes with the observed effects on dv/v.

SPOTL simulations suggest that at diurnal frequencies the tide-induced volumetric strain is ~10�8.
Temperature-induced strain is more difficult to constrain, but we can estimate the order of magnitude (see
the supporting information for more details): for diurnal frequencies the thermoelastic strain is ~10�8, and
the strain due to temperature-caused changes of atmospheric loading is roughly 1 order smaller. This sug-
gests that the diurnal tide-induced and temperature-induced strains are of similar magnitudes, which is con-
sistent with our inference from the spectra that daily variations in dv/v have a mixed origin.

The estimation of absolute thermal strain is fraught with uncertainty, but we can use the predicted diurnal
tide-induced and temperature-induced strain (which are of similar magnitude) as a starting point for relative
amplitude estimation in the semidiurnal band. SPOTL simulations (Figure 3b) suggest that the semi diurnal
tidal peak is larger than the diurnal peak, and the semidiurnal thermoelastic strain has been suggested to
be smaller than the diurnal one (Ben-Zion & Leary, 1986). Combined, these calculations thus predict that

Figure 4. Comparisons of time series of tidal model and dv/v. Tide-induced volumetric strain and dv/v are (a) filtered
around semidiurnal between 10 and 14 hr and (b) filtered around diurnal between 18 and 29 hr. The data are plotted
for Julian days 188–196, when the nearby precipitation is low (Figure 2b), and both the diurnal and semidiurnal dv/v energy
are relatively strong or well recovered (Figure 2c).
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semidiurnal tidal strain should be larger than semidiurnal thermoelastic strain, which agrees with our empiri-
cal evidence that the semidiurnal tidal effect on dv/v is larger than the thermal effect.

For the terdiurnal variations we follow similar qualitative reasoning. Near 3 cycles per day, the tide-induced
strain is approximately an order of magnitude smaller than around the diurnal frequency, whereas model
predictions suggest that the temperature-induced strain at diurnal and ter-diurnal frequencies are of the
same order. These expectations from strain modeling are consistent with the observation that the thermal
effects dominate in the terdiurnal variations of dv/v.

4.2. Seismic Velocity Susceptibility

With the precision reached in this experiment we can evaluate the ratio between themeasured magnitude of
dv/v and stress estimated from the tidal models. During periods when the precipitation are low (that is, Julian
days 188–196; Figure 2b) the seismic susceptibility is ~5 × 10�7 Pa�1 for the semidiurnal tide. This quantity,
which can be used to characterize the mechanical state of the rocks (Brenguier et al., 2014), had previously
been determined for tidal strain only by expensive active source experiments (Reasenberg & Aki, 1974;
Yamamura et al., 2003). Our analysis demonstrates that with knowledge of the predictable continuous exter-
nal forcings (such as tides), this can be done continuously using ambient noise records, thus enabling cost-
effective long-term monitoring of the mechanical state of crustal rocks.

4.3. Depth Sensitivity of dv/v Measurements

For the measurements of dv/v we use coda waves in the 1- to 5-Hz range and a 4- to 25-s lapse time window.
This part of coda contains both surface wave and body waves (conversions between the two wave types are
by scattering; Hennino et al., 2001). Thus, the sensitivities of both wave types contribute to the depth sensi-
tivity of coda-based measurements, with a partition coefficient between them depending on the lapse-time
and scattering properties (Obermann et al., 2013, 2016). Under the diffusion approximation, we can evaluate
the depth sensitivity of body waves following Pacheco and Snieder (2005; see the supporting information).
With a mean free path l of ~0.7 km and a bulk wave velocity c of ~1.5 km/s (at lapse time around 15 s), the
sensitivity of the body waves at ~2 km has reduced to 10% of the value at surface. The surface wave sensi-
tivity decays more rapidly with depth, and vanishes after two thirds of the central wavelength, which in this
case is ~500 m. The ratio of lapse time over mean free time is about 30, which corresponds to a partition coef-
ficient of about 0.9 (Obermann et al., 2016). We conclude that our dv/vmeasurements are dominated by body
wave sensitivity and therefore are most sensitive to changes within the top ~2 km.

5. Conclusions

In this study, we demonstrate the feasibility of near-real-time monitoring of small transient deformations in
the shallow crust with dense arrays of autonomous seismometers. Using ambient noise, we detect daily and
subdaily dv/v changes of the order of 0.01% (corresponding to crustal strain variations of the order of 10�8,
which is equivalent to stress variations of the order of 102 Pa with a bulk modulus of 2 × 1010 Pa) with hourly
temporal resolution. The seismic susceptibility obtained here is comparable with results using active sources.
Monitoring with such high precision and temporal resolution may be used to detect the precursory small
deformation that is expected to occur before the onset of instabilities that are responsible for earthquakes,
landslides ,and volcanic eruptions, and is therefore instrumental in the forecasting of catastrophic geological
events. Furthermore, comparison and assessment of dv/v, theoretical modeling, and observations of Earth
surface deformation suggest that the dv/v monitoring by dense seismic arrays provides complementary
information to and can be used in concert with existing geodetic techniques, for understanding and detect-
ing transient crustal deformation.
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