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S U M M A R Y
We present a new method for estimating time-series of relative seismic velocity changes
(dv/v) within the Earth. Our approach is a Markov chain Monte Carlo (MCMC) technique
that seeks to construct the full posterior probability distribution of the dv/v variations. Our
method provides a robust, computationally efficient way to compute dv/v time-series that can
incorporate information about measurement uncertainty, and any prior constraints that may be
available. We demonstrate the method with a synthetic experiment, and then apply the MCMC
algorithm to three data examples. In the first two examples we reproduce dv/v time-series
associated with the response to the 2010 M 7.2 El Mayor-Cucapah earthquake at two sites
in southern California, that have been studied in previous literature. In the San Jacinto fault
zone environment we reproduce the dv/v signature of a deep creep slip sequence triggered by
the El Mayor-Cucapah event, that is superimposed on a strong seasonal signal. At the Salton
Sea Geothermal Field we corroborate the previously observed drop-and-recovery in seismic
velocity caused by ground shaking related to the El Mayor-Cucapah event. In a third, new
example we compute a month long velocity change time-series at hourly resolution at Piñon
Flat, California. We observe a low amplitude variation in seismic velocity with a dominant
frequency of 1 cycle per day, as well as a second transient signal with a frequency of 1.93
cycles per day. We attribute the 1-d periodicity in the dv/v variation to the combined effects of
the diurnal tide and solar heating. The frequency of the signal at 1.93 cycles per day matches
that of the lunar (semi-diurnal) tide. Analysis of the uncertainties in the Piñon Flat time-series
shows that the error contains a signal with a frequency of 1 cycle per day. We attribute this
variation to seismic noise produced by freight trains operating within the Coachella Valley. By
demonstrating the applicability of the MCMC method in these examples, we show that it is
well suited to tackle problems involving large data volumes that are typically associated with
modern seismic experiments.

Key words: North America; Inverse theory; Computational seismology; Seismic interfer-
ometry; Seismicity and tectonics; Seismic noise.

1 I N T RO D U C T I O N

Seismic velocity is a key physical property of the Earth, and an im-
portant observable quantity that can provide information about the
subsurface. These conditions, and therefore seismic velocity, can be
altered by a variety of natural internal processes linked to tectonic
stresses, volcanism and underground engineering operations asso-
ciated with resource production. Changes in seismic velocity within
the Earth’s crust can thus be attributed to many sources, including
earthquakes and slip events (e.g. Poupinet et al. 1984; Wegler &
Sens-Schönfelder 2007; Brenguier et al. 2008b; Nakata & Snieder
2011; Brenguier et al. 2014; Obermann et al. 2014). External forces,
such as those originating from the dynamics of the Earth’s atmo-
sphere (Sens-Schönfelder & Wegler 2006; Hillers et al. 2015a), or

solid Earth tides (Hillers et al. 2015b; Mao et al. 2019a) can also
affect rock properties.

The importance of detecting and measuring variations in seismic
velocity derives from the ability to resolve and study the underlying
deformation within a medium, which is linked to the state of stress
(Niu et al. 2008). Hence, accurately measuring temporal variations
in seismic velocity are essential to study the properties of a material,
and has found numerous applications in the passive monitoring of
fault zones (e.g. Wegler & Sens-Schönfelder 2007; Brenguier et al.
2008a; Hillers et al. 2019; Qiu et al. 2019), volcanoes (e.g. Bren-
guier et al. 2008b; Rivet et al. 2014; Sens-Schönfelder et al. 2014),
landslides (Voisin et al. 2016), in geothermal stimulation contexts
(Obermann et al. 2015) and also within engineering structures such
as levees (Planès et al. 2017) and dams (Olivier et al. 2017).
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While it is possible to use repeating earthquakes to monitor in-
ternal changes within the Earth (Baisch & Bokelmann 2001; Ru-
binstein & Beroza 2004; Schaff & Beroza 2004), the most common
way (Sens-Schönfelder & Wegler 2006; Wegler & Sens-Schönfelder
2007; Brenguier et al. 2008b) to calculate dv/v time-series is to
compute ambient noise cross-correlation functions over a given
time span at some temporal resolution, and then define a reference
cross-correlation function, which is usually a stack over the analysis
period. Each individual cross-correlation function is then compared
to the reference to calculate the relative time delay between seismic
arrivals contained in the coda part of the waveform, using meth-
ods such as moving time-window cross-spectral analysis (MWCS,
Poupinet et al. 1984; Clarke et al. 2011), stretching (Lobkis &
Weaver 2003), dynamic warping (Mikesell et al. 2015) and wavelet
transforms (Mao et al. 2019b). This time delay is proportional to
the apparent velocity change in the medium.

Robust estimates of the temporal variations in seismic velocity
can provide constraints on material properties that are complemen-
tary to other monitoring techniques such as satellite geodesy and
observations of seismicity and tremor. One key advantage of seismic
monitoring using the ambient noise field is the temporal resolution
of the observations that it provides. Satellite monitoring in partic-
ular is constrained by the need to wait several days between image
acquisitions. Noise-based seismic monitoring studies at regional
scales routinely achieve daily resolution for velocity change time-
series, and more recent studies have shown that hourly resolution is
possible at local scales (Mao et al. 2019a).

An alternative method to the reference stack for calculating the
dv/v time-series between two seismic stations (Brenguier et al. 2014)
involves calculating the velocity difference between every pair of
cross-correlation functions in the data set, and then inverting these
measurements for the best-fitting dv/v time-series. By avoiding the
use of a single reference correlation function, this approach is not
limited by the obtained dv/v time-series only being valid when com-
pared to an arbitrary reference. It also avoids potential difficulties
in defining a reference, which can occur in highly variable environ-
ments such as volcanoes (Sens-Schönfelder et al. 2014). In addition,
by incorporating the full amount of available data, the method of
Brenguier et al. (2014) provides more robust constraints on seismic
velocity changes than the reference approach described above, as
well as offering a way to deal with gaps in data sets. Due to the fact
that this approach does not require some reference seismic velocity
to be defined, we refer to it as the Reference Independent Velocity
Variation Estimator (RIVV-E).

Brenguier et al. (2014) use a matrix-based least squares method
to solve the RIVV-E inverse problem. The need to invert a matrix as
part of this process limits the amount of data that can be included
in the analysis, due to the fact that including N cross-correlation
functions from a given time-span results in N(N − 1)/2 correlation
pairs. This unfavourable scaling of the problem with the amount
of data can result in challenging computational memory require-
ments during the matrix inversion process. This restriction means
that without high performance computing architecture the RIVV-E
approach is only suitable for short time-series (∼100 s samples),
and when inverting a small number of station pairs simultaneously.
Furthermore, Brenguier et al. (2014) utilize a model covariance
matrix with an ad hoc smoothing parameter, along with a further
subjective damping parameter, to stabilize the inversion.

In this study, we present an adaptation to the RIVV-E method
that applies a Markov chain Monte Carlo (MCMC) approach to the
determination of the dv/v time-series. The MCMC method does not
require the inversion of a matrix, only the repeated solution of the

forward problem. By reducing matrix inversion to matrix multiplica-
tion, problems with a much greater volume of data become compu-
tationally tractable. This improved computational efficiency allows
us to construct longer dv/v time-series, and invert data recorded
at a large number of stations simultaneously. Inverting data from
multiple station pairs simultaneously is advantageous to the more
common approach of inverting the data pair-by-pair and averaging
the result, as it provides more accurate dv/v time-series. In addition,
the use of MCMC methods allow for the determination of the full
posterior probability distribution of the dv/v time-series, complete
with rigorous treatment of data uncertainties, rather than providing
a single best-fitting model. As such, ad hoc smoothing and damping
parameters are not required with the method we present here.

In this paper, we first outline our MCMC approach, and demon-
strate its potential by applying it to a synthetic example. We then
apply our method to real data, reproducing three examples from
previous studies (Taira et al. 2018; Hillers et al. 2019; Mao et al.
2019b). Our first real data example is the observation of seismic
velocity variations using data recorded at seismic stations located
on the San Jacinto Fault Zone near Anza, southern California. At
Anza, we confirm the observation of a strong seasonal variation
in dv/v time-series constructed at daily resolution, as well as a
∼100-d-long transient signal associated with a deep creep episode
triggered by the 2010 M 7.2 El Mayor-Cucapah earthquake (Inbal
et al. 2017; Hillers et al. 2019). In our second example, we focus
on the transient dv/v signal produced by shaking directly from the
El Mayor-Cucapah earthquake. To achieve this, we reproduce the
results of Taira et al. (2018) and Mao et al. (2019b), who observed a
reduction, and subsequent recovery, in seismic velocity at the south
eastern end of the Salton Sea immediately following the El Mayor-
Cucapah event. Finally, to demonstrate the capacity of the MCMC
method, we perform a new experiment to calculate a month long
dv/v time-series at hourly resolution from data recorded during a
seismically quiescent period at a 13 station array located at Piñon
Flat, California. We find that the changes in seismic velocity and
its associated uncertainty at Piñon Flat display a strong correlation
with tidal strain signals at periods of 1.0 and 1.93 cycles per day
(Agnew 1981, 2015).

2 M E T H O D O L O G Y

2.1 Reference independent velocity variation estimator
(RIVV-E)

Given a suite of ambient noise cross-correlation functions between
two stations that span a given time period at some temporal reso-
lution, the RIVV-E procedure for estimating dv/v time-series pre-
sented by Brenguier et al. (2014) involves the calculation of the
seismic velocity change between each pair of cross-correlation
functions. The seismic velocity variation between cross-correlation
functions at times i and j is denoted as δvij. We can calculate δvij

from

δvi j = v j − vi

vi
= MWCS(cc fi , cc f j ), (1)

where MWCS(ccfi, ccfj) is the output of a moving time-window
cross-spectral analysis (Poupinet et al. 1984) performed on cross-
correlation functions i and j. The MWCS procedure may be freely
substituted for some other method of estimating the velocity change,
such as stretching (Lobkis & Weaver 2003), dynamic warping
(Mikesell et al. 2015) or wavelet transform (Mao et al. 2019b).
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Together, the δvij measurements define a data vector

d =

⎡
⎢⎢⎢⎢⎢⎣

δv12

δv13

δv14

...
δvn−1n

⎤
⎥⎥⎥⎥⎥⎦

(2)

which is of length N(N − 1)/2, where N is the number of correlation
functions. We aim to invert d to retrieve a dv/v time-series of length
N defined as

m =

⎡
⎢⎢⎢⎢⎢⎣

δv1

δv2

δv3

...
δvn

⎤
⎥⎥⎥⎥⎥⎦

, (3)

where δvn is the velocity change at time n. If the seismic velocity
changes are small (<0.1 per cent), Brenguier et al. (2014) show that
d and m can be related through

δv j − δvi = v j − vi

vre f
= v j − vi

vi

vi

vre f

= δvi j
vi

vre f
= δvi j (1 + δvi ) (4)

and the problem can be described in the form d = Gm, where G is

a sparse matrix of shape
[

N (N−1)
2 , N

]
and with the form

G =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

−1 1 0 · · · · · · · · · · · · 0

−1 0 1 0 · · · · · · · · ·
...

−1 0 0 1 0 · · · · · ·
...

... · · · · · · · · · · · · · · · · · ·
...

0 · · · · · · · · · · · · 0 −1 1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

. (5)

The problem can be solved by any convenient inversion method.
Previous studies (Brenguier et al. 2014; Gómez-Garcı́a et al. 2018)
have opted for a matrix-based least-squares approach by solving

m = (
GT C−1

d G + αC−1
m G

)−1
GT C−1

d d, (6)

where C−1
d and C−1

m are the data and model covariance matrices,
and α is a damping parameter. To incorporate more data in a single
inversion, such as multiple station pairs or extra components of
motion, the required rows can simply be appended to the d, G
and C−1

d matrices. Whilst the matrix approach is more robust with
respect to waveform variations in the cross-correlation functions
when compared with the reference approach (Brenguier et al. 2014),
it has several disadvantages. First, subjective choices must be made
for the entries in C−1

m , which governs the smoothing that will be
applied to the retrieved model. An additional choice must be made
for the value of α, which weights the importance of modelization
uncertainties versus data uncertainties. Finally, the inversion of the
matrix

(
GT C−1

d G + αC−1
m G

)
(eq. 6) is computationally expensive,

and may be intractable when G is very large. We address these
disadvantages by implementing a Bayesian MCMC approach.

2.2 Bayesian MCMC approach

Bayesian inversions aim to determine model parameters by combin-
ing previously available information on the model space (the prior
probability) with additional constraints provided by the observed

Figure 1. Schematic outline of the Markov Chain Monte Carlo algorithm
presented in this study. Details of each step can be found in Section 2.2.

data (Tarantola 2005). The aim is to construct the full posterior
probability distribution of every model parameter, defined here as
the velocity state δvn at a given datum n (eq. 3), incorporating knowl-
edge of uncertainties on either the data or modelization. The pos-
terior distribution can be constructed using a memory-less random
walk through the parameter space using the Hastings–Metropolis
algorithm (Fig. 1). MCMC methods are now commonly applied
to many problems in seismology, including seismic tomography
(Bodin et al. 2012; Galetti et al. 2017), earthquake slip inversions
(Minson et al. 2013; Dettmer et al. 2014; Amey et al. 2018, 2019),
the modelling of post-seismic deformation (Ingleby & Wright 2017)
and ambient noise data processing (Chaput et al. 2016).

The problem of calculating seismic velocity change time-series
(Section 2.1) can be solved through the application of MCMC meth-
ods. To start a single Markov chain, we begin by generating a random
model, m, (eq. 3) that is drawn from some prior distribution, repre-
senting our previous knowledge of the system. It is possible to start
multiple simultaneous chains in this manner, and then combine the
resultant posterior distributions. As each Markov chain is indepen-
dent from the others, and no communication is required between
chains, the process can be considered ‘embarrasingly parallel’ (Her-
lihy & Shavit 2012). This is an important advantage of the MCMC
approach, as more parallel Markov chains can be used to reduce the
required computation time as the volume of input data increases.
There is usually little prior information available to constrain dv/v
time-series, so in our examples we choose a prior of uniform prob-
ability with δvn being bounded between -1 and 1 per cent. These
bounds are selected as variations in seismic velocity rarely exceed
1 per cent outside of earthquake strong motions in the shallow crust
(e.g. Nakata & Snieder 2011; Takagi et al. 2012; Viens et al. 2018).

After drawing a random starting model, subject to the prior prob-
ability, we calculate the likelihood of this model explaining the ob-
served data, d (eq. 2). This is subject to a given likelihood function.
In this case, we choose an L2 measure of misfit as the likelihood,
which is equivalent to a Gaussian probability distribution (e.g. Aster
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et al. 2013):

p (d|m) = e− 1
2 (d−Gm)T C−1

d (d−Gm), (7)

where d, m and G correspond to eqs (2), (3) and (5), respectively.
The data uncertainties are contained in C−1

d , which is a sparse diag-

onal matrix of dimensions
[

N (N−1)
2 ,

N (N−1)
2

]
. The diagonal entries

of C−1
d are 1/σ 2, where σ 2 is the variance of the corresponding data

point in d (eq. 2). Other representations of likelihood are also valid.
For example, an L1 measure of misfit (Laplacian distribution) may
be desirable due to its robustness against outliers. The Laplacian
distribution is normally unsuitable for inverse problems due to the
fact that the function is non-differentiable when the residual is zero,
however, the fact that MCMC methods do not require differentia-
tion of the likelihood function permits its use. All of the examples
presented in this study use the L2 norm. When calculating the likeli-
hood of the model, the prior constraints are also taken into account.
For uniform prior probability, as considered here, the model is re-
jected if any dv/v value in the time-series has a value outside the
permitted range.

After calculating the likelihood of the current model, the Markov
chain needs to take a random step through the model space. This is
achieved by randomly perturbing the current model through

m′ = m + ε
(
σp

)
, (8)

where the perturbation vector, ε
(
σp

)
, is drawn from a Gaussian

distribution with zero mean and a standard deviation of σ p. As the
RIVV-E approach does not require a reference velocity state, it is
only the relative velocity variations between each cross-correlation
function that is resolved. Due to this, at each iteration we subtract
the mean of the proposed model. If the mean is not removed, the
Markov chain will never converge to a region of the model space
with high likelihood, as any number of dv/v time-series with the
same relative velocity variations are equally likely. We then calculate
the likelihood of m′ using eq. (7). The acceptance of m′ into the
posterior distribution is subject to the Metropolis rule:

(i) If p (d|m′) ≥ p (d|m), accept m′.
(ii) If p (d|m′) < p (d|m), accept m′ with a probability equal to

p(d|m′)
p(d|m) .

(iii) Else, reject m′ and save an additional copy of m.

In practice, in step (ii) m′ is accepted if the ratio
p(d|m′)
p(d|m) is greater

than a randomly generated number between 0 and 1. If not, m′

is rejected. This process is repeated until the posterior probability
distribution of m is sufficiently sampled, which is judged as the
point when the posterior resembles a smooth Gaussian function.

To efficiently search the entire parameter space of m, it is impor-
tant to ensure that the MCMC algorithm favours the exploration of
high likelihood models, but not to the exclusion of low likelihood
areas of the model space. Roberts et al. (1997) show that to main-
tain efficiency, the acceptance rate of the proposed models should
be kept equal to 23.4 per cent. The acceptance rate is controlled by
the choice of model perturbation (eq. 8). A higher standard devia-
tion in the perturbation distribution, σ p, leads to larger jumps in the
parameter space, and thus an increase in rejection likelihood. The
reverse is true for smaller values of σ p. It is therefore sensible to
choose a value of σ p that results in an acceptance rate close to 23.4
per cent.

It is likely that the model acceptance rate will vary widely
throughout the progress of the Markov chain. This is particularly
true if the initial model is of low likelihood. Under these condi-
tions, the Markov chain will undergo a period of ‘burn-in’, in which

it converges to an area of the model space with higher likelihood
(Hastings 1970; Mosegaard 1998). During the burn-in period, the
generated models are highly correlated with those of previous it-
erations, and are thus not representative draws from the posterior
distribution. To remove the burn-in samples, we inspect the evolu-
tion of model likelihood versus iteration, and remove the portion of
the chain that exhibits a rapidly increasing likelihood. An example
of the burn-in period is shown in Figs 2(a) and (b). In Fig. 2(a) it is
clear that during the first 5000 iterations of the MCMC algorithm,
the likelihood of the generated models is rapidly increasing. Like-
wise, the dv/v themselves are converging towards values of higher
likelihood (Fig. 2b). To ensure computational efficiency at all steps
in the Markov chain, we periodically tune the width of the pertur-
bation distribution (Amey et al. 2018). After every 100 iterations
of the MCMC algorithm, we calculate the acceptance rate, r, of the
previous 100 models. If the acceptance rate is not within 10 per cent
of the ideal acceptance rate of 23.4 per cent, σ p is either increased
or decreased by a factor equal to the ratio r

0.234 . This adjustment of
the model perturbation ensures an efficient search of the parameter
space at all points of the Markov chain.

This MCMC method allows us to construct the full posterior
probability distribution of the seismic velocity change time-series.
This approach has several advantages. First, we are able to quanti-
tatively assess the the uncertainties associated with the final model,
taking into account the error associated with our observations. In
addition, the problem does not require any ad hoc smoothing as
applied by Brenguier et al. (2014) and Gómez-Garcı́a et al. (2018).
Instead, the value of each model parameter is resolved purely by the
prior probability distribution and the constraints provided by the
observed data. Finally, the MCMC approach requires only that we
solve the forward problem, d = Gm, through matrix multiplication.
This greatly reduces the computational load with respect to a matrix
inversion approach, and allows us to utilize much greater volumes
of data to obtain the seismic velocity change time-series.

3 R E S U LT S

3.1 Synthetic example

To demonstrate the MCMC approach, we first present an example
involving the retrieval of a homogeneous seismic velocity change
time-series from artificially stretched waveforms. To generate the
synthetic waveforms we retrieve a single cross-correlation function
from the data for use as a reference waveform. We then produce
a set of synthetic dv/v values and apply these as a stretching pa-
rameter to the reference waveform to create a synthetic gather of
cross-correlation functions. Finally, we apply the procedure out-
lined in Section 2.2 in an attempt to retrieve the original dv/v values
from the synthetic cross-correlation gather. Our synthetic dv/v se-
ries is composed of 200 samples, which can be interpreted as days
in a time-series. We incorporate the effect of three different signals.
The first is a periodic signal, modelled as a sine wave with a max-
imum amplitude of 0.04 per cent and a period of 200 d, designed
to represent the long-term seasonal variation observed in seismic
velocities as a result of annual variations in temperature or rainfall
(Sens-Schönfelder & Wegler 2006; Meier et al. 2010; Richter et al.
2014; Hillers et al. 2015a; Lecocq et al. 2017; Clements & Denolle
2018).

A second periodic signal is included, with a period of 12 d, to
represent shorter term fluctuations in seismic velocity, which can
be caused by changes in groundwater level (Sens-Schönfelder &
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(A) (B)

(C) (D)

Figure 2. (a) Evolution of the model likelihood for the first 20 000 iterations of the MCMC algorithm during the noisy synthetic test. The burn-in period is
clearly seen during the first ∼2000 iterations, where the likelihood rapidly increases. (b) The evolution of the value taken by the dv/v value at day 100 for the
first 20 000 iterations of the MCMC algorithm during the noisy synthetic test. (c) Joint probability distribution of dv/v at days 100 and 101 in the synthetic
example (Section 3.1), following the MCMC inversion of the noisy observations. The burn-in period (a) has been removed. The colour scale indicates the
frequency at which each dv/v value was drawn from the posterior with a given value. Red colours indicate a higher frequency, and therefore a higher probability
of those dv/v values being drawn. (d) The marginal probability distribution of dv/v at day 100. The burn-in period (a) has been removed. Higher frequency
indicates a higher probability of the dv/v parameter being drawn with that value.

Wegler 2006; Hillers et al. 2014; Clements & Denolle 2018). The
maximum amplitude of the short period signal is 0.005 per cent.

The third signal is designed to mimic the response to an earth-
quake. It consists of the typically observed step-drop in dv/v ampli-
tude (−0.1 per cent), located at day 100, followed by a logarithmic
increase back to zero amplitude at the end of the time-series. The
three signals are summed to produce the synthetic dv/v series, which
is shown in Fig. 3. As outlined in Section 2.2, the retrieved dv/v
time-series will have zero mean, so we also remove the mean of the
target synthetic dv/v to facilitate direct comparison. The reference
waveform is then stretched by each dv/v value in turn to produce
the synthetic cross-correlation gather.

To simulate more realistic recording conditions, we add variable
levels of random Gaussian noise to the cross-correlation gather.
The noise is added directly to the waveforms, with a mean of zero
and a standard deviation of 0.005. We calculate the dv/v value
between each pair of synthetic waveforms using the MWCS method
(Poupinet et al. 1984; Clarke et al. 2011).

We then apply the MCMC approach described in Section 2.2 to
both noise-free and noisy cross-correlation gathers and attempt to
retrieve our synthetic dv/v time-series. We run a single Markov chain
for 250,000 iterations of the MCMC algorithm (Fig. 1), and remove
the first 10,000 samples as the ‘burn-in’ period. The remaining mod-
els, that were accepted subject to the Metropolis rule (Section 2.2),
represent the posterior distribution. The Markov chain is completed
in ∼30 s on a 3.0 GHz CPU. Fig. 2 shows joint and marginal proba-
bility distributions at days 100 and 101, which represent the peak of
the earthquake signal in our synthetic time-series, taken following
the inversion of the noisy observations. The marginal probability

distribution of the dv/v estimate at day 100 in Fig. 2(d) is clearly
Gaussian. This is an encouraging result, as it greatly simplifies the
extraction of information from the full posterior distribution. For
example, if the posterior distributions of the dv/v values are Gaus-
sian, then the maximum likelihood model is simply the mean of the
posterior. Similarly, statistics such as standard deviation can be eas-
ily computed from the posterior, and can be used to infer the level
of variability in the model that is permitted by the observations and
any prior constraints.

Fig. 2(c) shows the joint probability distribution of dv/v values
at days 100 and 101. Again, the distribution is clearly Gaussian in
both dimensions. The ‘bulls eye’ shape of the joint distribution in-
dicates that both parameters are independently resolved. If the joint
distribution was instead shaped like an ellipse, this would indicate
a degree of covariance between the two parameters, in which only
some linear combination of the two parameters is resolved (Aster
et al. 2013). The ability to independently resolve two model param-
eters that are adjacent to each other in the time-series demonstrates
a clear advantage of the inversion method designed by Brenguier
et al. (2014).

A comparison of the results from the synthetic test are shown
in Fig. 3. For both the inverted models, we show the mean of the
posterior probability distribution. In the noise-free case, all three
components of the synthetic dv/v time-series are very well resolved,
with only minor variations from the true values. In the presence
of noise, the mean model of the posterior distribution still closely
matches the target synthetic dv/v time-series, with an overall root-
mean-square misfit of 0.014 per cent. The mean posterior time-
series retrieves the earthquake signal along with the long period
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(A) (B)

Figure 3. Recovery of a synthetic dv/v time-series using the MCMC method. (a) Comparison between the true synthetic dv/v time-series and those recovered
by the MCMC inversion. The red line shows the original synthetic time-series. The blue line shows the mean model of the posterior distribution that is retrieved
from synthetic stretched waveforms by the MCMC approach, when no random noise is added. The black line is the mean model of the posterior distribution
that is retrieved by the MCMC approach when random Gaussian noise is added to the synthetic cross-correlation gather. The dashed orange line is the model
produced by the matrix inversion approach of Brenguier et al. (2014). (b) The power spectra of the synthetic dv/v time-series compared with that recovered by
the MCMC method after Gaussian noise is added to the observations.

variation, with only the recovery of the short-period variation being
degraded. To aid in the comparison between the true model and the
model retrieved by the MCMC approach, we compute the power
spectra, which is shown in Fig. 3(b). From the power spectra it
is obvious that the long period variation (frequency ∼0.005) is
present in the recovered signal. There is also a peak in the recovered
spectrum at ∼0.08, which coincides with the short period (12-d)
variation added to the original signal, but this peak is not prominent
and lacks power when compared to peaks at other frequencies that
are associated with the added noise. Whilst it is clear from the
example in Fig. 3 that extracting very low dv/v amplitude variations
may be difficult in the presence of noise, overall, the robust retrieval
of the synthetic time-series demonstrates the potential of applying
MCMC methods to estimating dv/v time-series from real data.

As the synthetic example in Fig. 3 contains only 200 model
parameters, we also invert the noisy data set using the matrix-based
inversion method of Brenguier et al. (2014), and compare it with
the MCMC result. This result is also shown in Fig. 3, and matches
almost exactly with the result obtained by the MCMC approach,
with an identical misfit to the true model of 0.014 per cent. The
close correspondance between the two techniques further proves
the robustness of our MCMC algorithm. It is worth noting that
in our synthetic test the smoothing term in eq. (6) (αC−1

m G) can be
neglected. For real data, the matrix-based inversion is more complex
and will require some degree of smoothing.

3.2 2010 El Mayor-Cucapah earthquake

3.2.1 Benchmark 1 - Seasonal variation and response to El
Mayor-Cucapah around Anza, California

The M 7.2 El Mayor-Cucapah (EMC) earthquake occurred on 4
April 2010 in Baja California, Mexico (Hauksson et al. 2011; Wei
et al. 2011b). The EMC event triggered a response along many
fault systems located in southern California, including short-lived
shallow slip in the Salton Trough and Imperial Valley region induced
by coseismic shaking (Wei et al. 2011a; Donnellan et al. 2014).

Hillers et al. (2019) focused on the effects of the EMC event in the
San Jacinto fault zone environment near Anza, California, where a
second M 5.4 earthquake occurred in Collins Valley on 7 July 2010.
By applying the matrix-based approach of Brenguier et al. (2014),
Hillers et al. (2019) identified a strong seasonal trend, in addition

to two transient signals in the dv/v time-series at Anza that were
associated with deep creep on the San Jacinto fault following the
EMC and Collins Valley events (Inbal et al. 2017).

We apply our MCMC approach to the dv/v data set compiled by
Hillers et al. (2019) to directly compare this method with the matrix-
based approach of Brenguier et al. (2014). For the year 2010, which
contains the EMC and Collins Valley events, Hillers et al. (2019)
calculated daily ambient noise cross-correlation functions for all
nine combinations of directional components. To isolate the dv/v
response to the deep creep events from that of the seasonal variation,
Hillers et al. (2019) also calculated daily cross-correlation functions
for the years 2008–2015, excluding 2010. To reduce the computa-
tional demand, the correlation functions calculated by Hillers et al.
(2019) span a period of 300 d from the years 2008 to 2015 and
utilized the ZZ component only. For the measurement of the sea-
sonal variation only, these correlation functions were stacked in a
5-d-long moving window, and then down-sampled by a factor of
2. Seismic velocity changes between the correlation functions were
calculated using the MWCS method (Poupinet et al. 1984; Clarke
et al. 2011) on waves arriving at lag times 20–40 s, in the frequency
band 0.2–2 Hz.

We use a subset of the data that consists of seismic stations located
on the southwestern side of the San Jacinto fault zone near Anza,
California (Fig. 4), where the seasonal trend and dv/v transients
were most clearly observed (Hillers et al. 2019). We first calculate
the average seasonal variation from the dv/v database for the years
2008–2015. The MCMC algorithm (Section 2.2) is applied to the
dv/v measurements obtained by Hillers et al. (2019). For this exper-
iment, a single chain is run for a total of 500,000 iterations. The
‘burn-in’ period of the chain is approximately 10,000 iterations,
after which the MCMC algorithm begins to draw sample models
directly from the target posterior probability distribution. The mean
of the posterior distribution, which corresponds to the maximum
likelihood model when uncertainties are normally distributed, is
shown in Fig. 5. To quantify the uncertainty of the retrieved model,
Fig. 5(a) also shows the standard deviation of each model parameter,
as well as 95 per cent confidence intervals.

The shape of the dv/v time-series retrieved through the MCMC
method is very similar to that found by Hillers et al. (2019). The
only significant difference between the two results is the amplitude
of the seasonal trend, particularly at the peak of the seasonal signal
between days 200 and 240. This difference can be attributed to the
fact that Hillers et al. (2019) compute the seasonal variation for
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Figure 4. Overview map of the locations of the earthquake and seismic stations used in this study. The yellow stars mark the epicentres of the El Mayor-Cucapah
(EMC) and Collins Valley (CV) earthquakes. The red triangles show the locations of the seismic stations used near Anza (Section 3.2.1). The blue triangles
are the location of the dense arrays at the Salton Sea Geothermal Field (Section 3.2.2) and Piñon Flat (Section 3.3). The station locations for these arrays are
shown in the inset boxes. The red squares indicate the major population centres of Los Angeles and San Diego. Topography data are from the GMRT synthesis
project (Ryan et al. 2009).

each year individually, and then calculated the mean of these time-
series. In our case, we include data from all years between 2008 and
2015 in a single MCMC inversion. Hillers et al. (2019) also apply
a moving 3-point-average to smooth their time-series, which is not
applied in our case. Fig. 5 also shows that the posterior standard
deviation is higher during days 0–120, indicating higher uncertainty
in the model. This time period covers the months January through
April, corresponding to the northern hemisphere winter. Greater
uncertainty during winter time reflects the greater variability in the
ambient noise field during this time of the year.

We apply the same MCMC process to the dv/v data recorded in
2010. The time-series (Fig. 5b) spans 200 d following 13 February
2010, and includes the EMC and Collins Valley events. To isolate
the transient signals related to both earthquakes, we subtract the
average seasonal variation calculated from the years 2008 to 2015
from the 2010 data in the manner described by Hillers et al. (2019)
(Fig. 5). The 2010 dv/v time-series displays a gradual decrease in
seismic velocity from early March, followed by a gradual increase

after early May. The transient velocity reduction lasts for approx-
imately 90 d, with the peak relative velocity reduction occurring
∼30 d after the event. The velocity reduction associated with the
Collins Valley event is smaller in amplitude, and begins immedi-
ately following the earthquake itself. The Collins Valley transient
lasts for approximately 40 d before the velocity recovers to the back-
ground level. It is clear from Fig. 5(b) that there is a period of 30 d
prior to the El Mayor-Cucapah event that exhibits intermittent, sharp
increases in the level of uncertainty. There is also a period of sig-
nificant uncertainty immediately following the El Mayor-Cucapah
earthquake, that decays over a period of ∼60 d. This decay pattern
follows the Omori law, similar to the aftershock distribution fol-
lowing the El Mayor-Cucapah earthquake (Hillers et al. 2019). The
sudden increases in uncertainty correspond to variations in the am-
bient noise wavefield caused by earthquakes. For example, the spike
in uncertainty at day 122 (Fig. 5b) is a result of the M 5.7 Ocotillo
earthquake, which occurred on the 14 June 2010 (Hauksson et al.
2011).

Figure 5. (a) Seasonal variation at Anza, California, between Julian day 1 and 300 for the years 2008–2015. The solid black line is the seasonal variation
calculated using the MCMC approach (Section 2.2). The black dashed lines indicate the 95 per cent confidence interval of the dv/v time-series, and the blue
line is the standard deviation of the dv/v values. The solid red line is the seasonal variation calculated using the matrix inversion approach of Brenguier et al.
(2014) by Hillers et al. (2019). (b) The dv/v variation during 2010, with the average seasonal variation in (a) removed. Large peaks in the standard deviation
(blue line) indicate poorly constrained data points, where observations may be missing, or of poor quality. The solid red line is the dv/v variation calculated by
Hillers et al. (2019). The dashed red line indicates the occurrence of the 2010 El Mayor-Cucapah earthquake, and the dashed blue line indicates the Collins
Valley earthquake.
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Figure 6. Response to the El Mayor-Cucapah earthquake at the Salton Sea Geothermal Field. The black line is the mean dv/v time-series, calculated from
the posterior distribution generated by the MCMC algorithm. In order to aid comparison, we have subtracted the median dv/v value between 1 January and 4
April from the time-series. The dv/v values are indicated on the left axis. The blue line is the standard deviation of the dv/v measurements, the value of which
is shown on the right axis. The red and orange lines are the results of Taira et al. (2018) and Mao et al. (2019b), respectively. The red dashed line marks the
occurrence of the El Mayor-Cucapah earthquake.T

Overall, the results that we have obtained with the MCMC method
show a striking similarity to the results obtained by Hillers et al.
(2019) obtained with the matrix inversion approach. This similarity
provides assurance in the MCMC-derived results, but also promotes
confidence in the dv/v time-series associated with the proposed deep
creep events in the San Jacinto fault zone environment (Inbal et al.
2017; Hillers et al. 2019).

3.2.2 Benchmark 2 - Response to the El Mayor-Cucapah
earthquake at the Salton Sea

To further test the performance of the MCMC approach we now
target the reproduction of an archetypal dv/v drop-and-recovery
signal associated with an earthquake response. We use a data set
recorded at the Salton Sea Geothermal Field, located at the south
eastern end of the Salton Sea (Fig. 4). These data have been used
for monitoring seismic velocity changes following the El Mayor-
Cucapah earthquake by Taira et al. (2018) and Mao et al. (2019b).
In contrast to the Anza network, neither of these studies observe
a strong seasonal variation in the seismic velocity at the Salton
Sea site, making this data set ideal for observing the dv/v transient
associated with the El Mayor-Cucapah event.

To study the reponse to El Mayor-Cucapah at the Salton Sea
site, we utilize the database of daily ambient noise cross-correlation
functions produced by Mao et al. (2019b). This data set is de-
rived from vertical component data recorded at seven stations of
the CalEnergy network between 15 December 2009 and 1 January
2011. To calculate the velocity change between each correlation
function, we again use the MWCS technique. The velocity change
is calculated from coda waves at lag times between 15 and 35 s, in
the frequency range 0.5–3.5 Hz. Following the calculation of the
dv/v measurements between each correlation function, we use the
MCMC method to derive the network averaged dv/v time-series. A
single Markov chain is run for 250,000 iterations, and the ‘burn-in’
period of 20,000 samples is removed from the posterior distribution.
On a single 3.0 GHz core, this chain takes 62 min to complete. Fig. 6
shows the mean model of the posterior distribution of the seismic
velocity change time-series for the Salton Sea data set constructed
by the MCMC method. The corresponding standard deviation of the
dv/v values is also shown. To ensure that we can compare our time-
series to the results of Taira et al. (2018) and Mao et al. (2019b)

using the same pre-earthquake baseline, we subtract the median
dv/v value between 1 January and 4 April from each dv/v value. In
the time period 1 January–4 April the relative seismic velocity is
generally constant. After the El Mayor-Cucapah earthquake on 4
April, there is an immediate large drop in relative seismic velocity.
Following this sudden decrease, the seismic velocity recovers in a
logarithmic fashion for ∼7 months, returning to the pre-earthquake
values by 1 November 2010. Similar to the observations at Anza
(Section 3.2.1), the standard deviation of the dv/v values also in-
creases slightly following the earthquake. This period of increased
uncertainty lasts for approximately 3 months, returning to the back-
ground value by June 2010. Unlike at Anza, the uncertainty does
not decay according to the Omori law .

The amplitude of the velocity drop that we observe following
the El-Mayor Cucapah is smaller than that observed by Taira et al.
(2018) and Mao et al. (2019b). This is due to the fact that the
dv/v results of both Taira et al. (2018) and Mao et al. (2019b)
are defined relative to their choice of reference correlation function.
This reference correlation function is a temporal average over a
period of 6 yr in the case of Taira et al. (2018), 1 yr in Mao
et al. (2019b). Differences in the time period used to define the
reference can lead to systematic variations in the obtained dv/v
time-series (Sens-Schönfelder et al. 2014, Fig. 6). In contrast,
the RIVV-E MCMC approach maintains fidelity to the relative dv/v
difference that we measure between the days immediately preceding
and following the earthquake.

The onset of the response to El Mayor-Cucapah is much sharper
at the Salton Sea Geothermal Field (Fig. 6), when compared with
the response at Anza (Fig. 5). The decrease in seismic velocity be-
gins immediately following the earthquake at the Salton Sea, and
the minimum relative seismic velocity is detected within ∼5 d of
the event. In the vicinity of Anza, the velocity reduction appears to
begin approximately 30 d before the earthquake, which may be the
result of the increased uncertainty on this section of the time-series.
The velocity also decreases at a much slower rate than at the Salton
Sea, with the maximum relative reduction occurring a further 30 d
after the El Mayor-Cucapah earthquake. The contrasting character-
istics of the two responses at Anza and Salton Sea indicate that the
mechanism for the velocity reduction is different in each case. The
fact that the Salton Sea response is detected simultaneously with
the earthquake suggests that damage to the rocks caused by pass-
ing seismic waves is likely responsible for the relative reduction in
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(A)

(B)

(C)

Figure 7. Variation in relative seismic velocity at the Piñon Flat array in July 2015. The raw velocity variations are shown by the black line in panel (b). The
blue line in panel (b) is the standard deviation of the dv/v time-series. Panel (a) shows the continuous wavelet transform of the dv/v time-series (black line)
between frequencies of 0.5–3 cycles per day. Darker colours indicate higher wavelet coefficients at that frequency and time. The black dashed lines represent
the theoretical frequencies of the diurnal and semi-diurnal tidal strain. The amplitude spectrum is shown on the right, calculated from the Fourier transform of
the signal. Panel (c) shows the same information as panel (a), but for the standard deviation time-series (blue line).

seismic velocity. In contrast, the more gradual response at Anza,
suggest that the dv/v transient is not directly linked to shaking in-
duced by the El Mayor-Cucapah event. Instead, the transient signal
at Anza is probably the result of deep creep along the San Jacinto
fault that was triggered by El Mayor-Cucapah (Inbal et al. 2017;
Hillers et al. 2019).

3.3 New observations of seismic velocity variations at
Piñon Flat related to tidal strain

In order to demonstrate the advantages in computational efficiency
provided by the MCMC method, we present a new example that uses
data from a seismic array at Piñon Flat, California (Fig. 4). The array
at Piñon Flat is a dense network of 13 broad-band seismometers
with an aperture of 1 km (Vernon 2014). We target the detection
of daily and subdaily variations in seismic velocity by computing
a one month dv/v time-series at hourly resolution for a seismically
quiescent period in July 2015.

Using the vertical component only, we first split the data into
1-hr-long segments of ambient noise, and the instrument response
was removed, with an initial bandpass filter applied between 0.1 and
15.0 Hz. The spectrum of each 1-hr-long trace was whitened in the
interval 1.0–12.0 Hz, then one-bit normalized (Bensen et al. 2007),
before a final bandpass filter was applied between 1.0 and 12.0 Hz.
Each processed trace was then tapered and cross-correlated with
the corresponding trace at every other station in the network. The
cross-correlations are cut to time lags between −120 and 120 s, and
we apply a singular value decomposition-based Wiener filter to the
cross-correlatin gather to improve the signal-to-noise ratio (Moreau

et al. 2017). During this process, we keep the first 15 singular
vectors, and the Wiener filter widths are 5 hr by five samples. We
calculate the velocity change between each pair of cross-correlation
functions in the data set using the MWCS method. The velocity
change is calculated in the frequency range 1.0–4.0 Hz, from the
coda waves arriving between 10 and 30 s lag time, using a 2.0 s
long MWCS window.

We then apply the MCMC method to infer the array-averaged
dv/v time-series for Piñon Flat during this one month time period.
The improvement in computational efficiency of the MCMC method
compared to the approach of Brenguier et al. (2014) stems largely
from the treatment of the G matrix (eq. 6). Whilst G typically
contains millions of entries, only a small number of these entries
are non-zero. Storing G as a sparse matrix greatly reduces the
memory requirements of matrix operations involving G, including
matrix multiplication.

This computational constraint means that the size of G must be
limited, usually by restricting the amount of data used in the in-
version. Brenguier et al. (2014) and Gómez-Garcı́a et al. (2018)
achieve this by only inverting data from one station pair at a time.
Methods that can solve eq. (6) without constructing the full inverse
matrix do exist. These approaches include matrix factorization and
iterative schemes such as the Conjugate Gradient method (Hestenes
& Stiefel 1952). Iterative schemes are particularly useful for solving
large linear problems, where the memory requirements of storing
dense matrix factors can be prohibitive (e.g. Fox et al. 2014). How-
ever, the number of iterations required for convergence to a solution
may rapidly increase with the dimensions of the linear problem. Typ-
ically, numerical pre-conditioners need to be designed and applied

D
ow

nloaded from
 https://academ

ic.oup.com
/gji/article-abstract/220/3/1791/5645243 by guest on 08 January 2020



1800 G. Taylor and G. Hillers

(A) (B)

Figure 8. Tidal signal recovered from Piñon Flat between July 1 and July 10. (a) The dv/v time-series at Piñon Flat (Fig. 7) bandpass filtered between 0.7 and
4 cycles per day. (b) the black line shows amplitude spectrum of the bandpass filtered tidal response shown in (a). The orange line is the amplitude spectrum
of the tidal strain predicted at the Piñon Flat Observatory in July 2015.

to an iterative scheme to ensure timely convergence (Wathen 2015).
In MCMC methods, numerical pre-conditioners are not necessary
to ensure the convergence of the Markov chain.

In this example at Piñon Flat, we simultaneously invert 672 hr of
data recorded at 13 stations (78 station pairs). This data set results
in a G matrix of dimensions 4,389,840 × 672. If G is not sparse, for
example during standard matrix inversion algorithms, this matrix
would require approximately 22 gigabytes of memory to store (at 8
bytes per entry). The memory requirement scales as n × memory
when extra stations or components of motion are added, where n is
the number of stations and components. As the length of the target
time-series is increased the scaling is quadratic, with N(N − 1)/2
× memory, where N is the number of time samples. As a result,
evaluating eq. (6) is not possible by standard matrix inversion. By
operating only on the sparse form of G, our MCMC approach is
able to incorporate this volume of data in a single inversion.

We run the MCMC chain for 250,000 iterations, and discard the
first 50,000 samples which are classified as the ‘burn-in’ period and
do not represent representative models from the posterior distribu-
tion. Fig. 7 shows the results of the MCMC inversion for Piñon Flat.
Fig. 7(a) shows the mean dv/v time-series of the posterior distribu-
tion, along with the corresponding standard deviation. In general,
the velocity variations are very small (<0.01 per cent). The uncer-
tainty on the velocity variation is lower than the amplitude of the
signal, generally near 0.005 per cent.

The clearest signal in the dv/v time-series in Fig. 7(b) is the si-
nusoidal daily variation, which is dominant throughout the entire
month. The power spectrum in Fig. 7(a) shows that this signal has a
frequency of 1 cycle per day (24 hr). To examine the temporal vari-
ation of any signals, we performed a continuous wavelet transform
with a Morlet wavelet on both the dv/v time-series and its standard
deviation, between frequencies of 0.5–3 cycles per day (Fig. 7a).
The diurnal variation in the dv/v values is clearly present throughout
the observation period, although there are ‘pulses’ in the amplitude
of the signal. There are several instances where the amplitude of
the diurnal signal is lower, notably between 4–5, 11–12 and 18–19
July. All of these dates align with weekends, when seismic noise
generated by anthropogenic activity is reduced. It is likely that the
decreased level of coherent noise in our target frequency band (1–
4 Hz) is responsible for the apparent reduction in amplitude of the
diurnal signal.

The signal near 2 cycles per day is mainly present between 1
July and 10 July, but may also be present between 19 July and 28
July. Though the signal near 2 cycles per day shows significant
temporal variation, analysis of the power spectrum (Fig. 8b) shows
that the average period of this variation is just below 2 cycles per

day, which matches the average period of the lunar (semi-diurnal)
tide at 1.93 cycles per day (Agnew 2012), subject to the frequency
resolution of our time-series.

To confirm that the main source of the dv/v signals near 1 and
2 cycles per day is the Earth tides, we calculated the theoretical vol-
umetric tidal strain at Piñon Flat Observatory at hourly resolution
between 1 July and 28 July 2015 (Agnew 2012). We then compare
the power spectra of the tidal strain to that of the dv/v time-series be-
tween 1 July and 10 July, where the semi-diurnal signal is strongest
(Fig. 7a). We filter the dv/v time-series to the tidal frequency range
between 0.7 and 4 cycles per day. Fig. 8(a) shows the bandpass
filtered dv/v time-series, and the corresponding power spectrum is
shown as the black line in Fig. 8(b). When compared with the power
spectrum of the predicted tidal strain (orange line, Fig. 8b), the lo-
cation of spectral peak in the dv/v time-series at 1 cycle per day
match with the predicted tidal strain. There is also a peak the dv/v
spectrum at 1.93 cycles per day corresponding to the semidiurnal
tide, though this peak is much lower in amplitude, likely due to the
temporal variability of this signal (Fig. 8a). Another explanation for
this discrepancy is the effect of temperature-induced strain due to
diurnal solar heating, which also has a period of 1 cycle per day (Tsai
2011). This interpretation is supported by Mao et al. (2019a), who
also observed tidal signals in dv/v time-series recorded at Piton de
la Fournaise volcano. Mao et al. (2019a) calculated that diurnal pe-
riod thermal-induced strain typically has the same magnitude as the
tidal-induced strain, which likely explains the greater prominence
of the 1 cycle per day spectral peak in our dv/v data.

The power spectrum of the standard deviation contains little en-
ergy above a frequency of 1 cycle per day. It is clear from the
time-series of the standard deviation in Fig. 7(b) that this 1-d pe-
riodicity is not consistently present throughout the month of July.
Instead, this daily variation in uncertainty is most visible between
July 1–10 and July 23–27. During these periods, the standard de-
viation usually peaks at around midnight local time. Seismic noise
at frequencies >1 Hz are typically associated with anthropogenic
activity (Ringdal & Bungum 1977; Peterson 1993). A study by In-
bal et al. (2018) showed that the presence of freight trains in the
Coachella Valley (<40 km from Piñon Flat), is a particularly strong
source of noise the 1–5 Hz frequency range throughout southern
California. These freight trains usually run during the night, with
activity peaking around midnight (Inbal et al. 2018). This leads us
to conclude that noise from human activity is a major contributor to
uncertainty in measuring seismic velocity changes at hourly reso-
lution, and that strong, directional noise generated by freight trains
within the Coachella Valley is a likely source of uncertainty in this
study.

D
ow

nloaded from
 https://academ

ic.oup.com
/gji/article-abstract/220/3/1791/5645243 by guest on 08 January 2020



Seismic velocity changes from a MCMC approach 1801

4 D I S C U S S I O N A N D C O N C LU S I O N S

In this study, we have introduced a new method for calculating
seismic velocity change time-series using a MCMC approach. We
used four examples to prove the efficacy of the MCMC approach,
and demonstrate the advantages provided by this new method. Our
synthetic example (Fig. 3) showed that the MCMC method can fully
recover a dv/v time-series that contains multiple signal types. This
recovery remains robust when random noise is added to the observa-
tions, although very small (<0.01 per cent), short-period variations
in seismic velocity may be difficult to detect in the presence of said
noise.

We also applied the RIVV-E MCMC approach to three exam-
ples using real data, and compared our results to those obtained
by previous authors that utilize the same data. There is a striking
similarity between the seasonal variation at Anza between 2008 and
2015 derived by the MCMC approach and the matrix-based method
of Hillers et al. (2019) (Fig. 5), with a velocity low (−0.04 per cent)
from January to May, which increases to a peak of 0.08 per cent in
July–September. Being able to reproduce the dv/v time-series using
a completely different inversion scheme is an encouraging result for
the MCMC method. Unlike the matrix-based approach, the MCMC
method does not require any ad hoc smoothing via a model covari-
ance matrix. Our results support the interpretation of Hillers et al.
(2019), that the gradual reduction in dv/v at Anza in response to El
Mayor-Cucapah is the result of triggered deep creep along the San
Jacinto fault, rather than direct shaking caused by the earthquake.
It is difficult to constrain the exact timing of the onset of the dv/v
transient associated with the El Mayor-Cucapah earthquake, due to
the larger uncertainty associated with this part of the time-series
(Fig. 5b). Further analysis of the standard deviation of the posterior
probability distribution provided two new interesting observations.
Firstly, the uncertainty of the dv/v at Anza is increased during winter
and spring (January–May). We attribute this added uncertainty to
enhanced seismic noise that is often present in the wavefield during
northern hemisphere winter (Peterson 1993; Stehly et al. 2006).
We also observe higher dv/v uncertainty following the occurrence
of the 2010 El Mayor-Cucapah earthquake that we attribute to the
presence of earthquake aftershocks in the seismic wavefield, which
contaminates the dv/v signal.

In Section 3.2.2, we applied the MCMC approach to data recorded
at the Salton Sea Geothermal Field, and were able to confirm the
observations of Taira et al. (2018) and Mao et al. (2019b), which
were derived using a different methodology. At Salton Sea, we
detect a large drop in relative seismic velocity (0.015 per cent) that
coincides with the El Mayor-Cucapah earthquake. The amplitude
of the velocity drop that we detect is smaller than that of previous
studies (Taira et al. 2018; Mao et al. 2019b). This is due to the
fact that the dv/v variations observed by Taira et al. (2018) and
Mao et al. (2019b) are measured relative to a subjective reference
velocity state, whereas the RIVV-E approach is sensitive to the dv/v
variations measured between each day. We also observe that the
seismic velocity recovers in a logarithmic fashion over a period of 7
months. In this case we support the conclusions of Taira et al. (2018)
and Mao et al. (2019b), and attribute the velocity reduction directly
to shaking caused by seismic waves from the El Mayor-Cucapah
earthquake. As with the Anza data set (Section 3.2.1), there is also
a period of increased uncertainty in the dv/v time-series at Salton
Sea following the El Mayor-Cucapah event, that we attribute to the
effect of earthquake aftershocks on the ambient noise field.

Finally, in Section 3.3 we demonstrated the computational effec-
tiveness of the MCMC method by simultaneously inverting 672 hr

of dv/v measurements recorded in hourly resolution at the 13 station
Piñon Flat array using the RIVV-E approach. By fully exploiting the
fact that G (eq. 5) can be stored in sparse matrix format throughout
the MCMC process, we greatly reduce the computational memory
requirements, and solve a problem that would usually be intractable
by matrix inversion. As shown in Fig. 7, the strongest variation in
dv/v that we observe at Piñon Flat has a period of 1 d. We also
observe higher frequency variations in the Piñon Flat data set (2–3
cycles per day). Despite a low signal-to-noise ratio, by filtering and
comparing our dv/v time-series with the theoretical tidal strain we
show that the most likely cause for the signals near 1 and 2 cycles
per day is periodic loading by solid Earth tide (Agnew 1981, 2012).
We observe that our dv/v time-series contains more power at the
diurnal period than the semi-diurnal period, which we attribute to
the added effect of thermally induced strain caused by solar heating
(Mao et al. 2019a), in addition to the temporal variability of the
semi-diurnal tidal signal. Furthermore, we clearly observe that the
dv/v standard deviation displays a periodicity of 1 d. The standard
deviation of the dv/v time-series is increased during the night. We
attribute this pattern in the dv/v uncertainty to strong directional
noise generated by late-night freight trains within the Coachella
Valley (Inbal et al. 2018).

We have demonstrated that our newly developed MCMC ap-
proach is able to extract more detailed information from seismic
velocity change time-series than the more common methods for
estimating variations in dv/v, such as the reference stack and ma-
trix inversion (Sens-Schönfelder & Wegler 2006; Brenguier et al.
2014). The MCMC method can also provide more robust results,
by providing direct information on uncertainty, and eliminating the
need for ad hoc smoothing of the dv/v time-series. We have also
shown that our MCMC approach has several computational ad-
vantages, which is an important consideration as modern seismic
deployments increasingly promote the inclusion of large volumes
of data. We expect that applying the MCMC approach in more
study environments and to a wider variety of problems will result
in a greater understanding of the mechanisms that cause seismic
velocity changes within the solid earth.
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