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S U M M A R Y
We present a new technique for deriving detailed information on seismic velocities of the
subsurface material from continuous ambient noise recorded by spatially dense seismic arrays.
This method uses iterative double beamforming between various subarrays to extract surface
wave contributions from the ambient-noise data in complex environments with unfavourable
noise-source distributions. The iterative double beamforming extraction makes it possible to
retrieve large amounts of Rayleigh wave traveltime information in a wide frequency band.
The method is applied to data recorded by a highly dense Nodal array with 1108 vertical
geophones, centred on the damage zone of the Clark branch of the San Jacinto Fault Zone
south of Anza, California. The array covers a region of ∼650 × 700 m2, with instrument
spacing of 10–30 m, and continuous recording at 500 samples s−1 over 30 d in 2014. Using
this iterative double beamforming on subarrays of 25 sensors and cross-correlations between
all of the station pairs, we separate surface waves from body waves that are abundant in the raw
cross-correlation data. Focusing solely on surface waves, maps of traveltimes are obtained at
different frequencies with unprecedented accuracy at each point of a 15-m-spacing grid. Group
velocity inversions at 2–4 Hz reveal depth and lateral variations in the structural properties
within and around the San Jacinto Fault Zone in the study area. This method can be used over
wider frequency ranges and can be combined with other imaging techniques, such as eikonal
tomography, to provide unprecedented detailed structural images of the subsurface material.

Key words: Spatial analysis; Tomography; Interferometry; Surface waves and free oscilla-
tions; Wave propagation; Fractures and faults.

1 I N T RO D U C T I O N

In science-fiction films, the future is often described as a world of
sensors. This is already true for the sciences in general, and for
Earth sciences in particular. To analyse the vast amount of recorded
data, large computers and fast algorithms are needed. More impor-
tantly, it is essential to develop new methodologies for extraction of
the increasing range of signals that are recorded by dense arrays of
sensors. The need for new methods is particularly true at geophysics
scales, which can now benefit from continuous data acquisition us-
ing very dense arrays of seismometers. These arrays can sometimes
include more than 10 000 sensors. Such sensor deployments were
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nearly inconceivable only 10 yr ago, and even very recently they
were limited to highly expensive geophysics experiments funded by
the oil and gas industries (Slater & Hollis 2012). However, recent
technological developments now allow academic institutions to ob-
tain seismic data recorded by thousands of sensors (Lin et al. 2013;
Ben-Zion et al. 2015; Hansen & Schmandt 2015).

This paper addresses the need for new methodologies in seis-
mic imaging of complex environments based on data recorded by
dense arrays of seismometers. We focus on methods that provide
high spatial resolution of critical areas, such as fault zones, that
are of particular importance for Earth sciences (Ben-Zion 2008).
We modify and further develop imaging techniques imported from
other fields than geophysics, such as medical ultrasonics and un-
derwater acoustics that were designed for scales ranging from a
few centimetres for medical applications to kilometres in ocean
acoustics. The new array processing methods developed here do
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Figure 1. Map of the 1108 (10 Hz) geophones installed in a 650 × 700 m2 configuration above the Clark branch (black lines) of the San Jacinto Fault (Southern
California). Each row along the x-direction is composed of ∼55 sensors with an interdistance of 10 m, and the nominal separation between the rows in the
y-direction is 30 m. Seismic ambient noise was recorded over more than one month, in May–June 2014. Some of the station names are given (italics). The red
dot at the centre of a 25-element green subarray corresponds to the sensor positioned at row 23, column 7 (called R2307). The two green subarrays refer to the
DBF processing described in Figs 8–11. The subarray centres at the North refer to a set of surrogate ‘sources’ (red) and a line of surrogate ‘receivers’ (black)
for DBF results at different frequencies (see Fig. 12).

not rely on complicated models, but instead only on data qual-
ity. We aim to reach high resolution, although not at the price
of robustness. If a-priori information is used at a given analy-
sis stage, it should be obtained from the data and not from prior
knowledge of the Earth structure, as this knowledge is limited and
uncertain.

In parallel with the improvement of array-deployment technol-
ogy and processing, the use of continuous ambient noise recorded
on dense geophone arrays allows the creation of surrogate active
sources from purely passive multi-element systems (Lin et al. 2013).
Turning passive systems into active ones through basic signal pro-
cessing has revolutionized the use of seismic arrays for subsurface
imaging at local and regional scales (Sabra et al. 2005a,b; Shapiro
et al. 2005; Roux et al. 2011). Taking advantage of the use of am-
bient seismic noise to produce coherent images, we develop here
techniques to extract high-resolution subsurface structural models
from spatially dense noise records.

Combining array processing and noise correlation, we analyse
data recorded by a spatially dense array of seismometers positioned
over the damage zone of the San Jacinto Fault Zone (SJFZ) in
Southern California (Ben-Zion et al. 2015). The SJFZ is the most
seismically active fault zone in Southern California (Hauksson et al.
2012), and it accounts for a large portion of the plate motion in
the region (Johnson et al. 1994; Lindsey & Fialko 2013). Robust
seismicity and a highly complex fault-zone structure with prominent
lateral and vertical heterogeneities at various scales (Allam & Ben-
Zion 2012; Zigone et al. 2015), along with fault-zone amplification
effects (Kurzon et al. 2014), add significant challenges to the goals
of this study.

The paper is structured as follows. In Section 2, the properties of
the ambient noise recorded by the dense array are analysed to opti-
mize the outcome of the noise-correlation process. In particular, a
spatial filtering algorithm is designed on the whole array to diminish
the importance of body waves associated with local microseismicity
just below the receivers. In Section 3, double beamforming (DBF)
is applied to the noise-correlation signals between subarrays taken
out of the dense array network. An iterative procedure allows the
identification and extraction of surface waves from their slowness
and group velocities. Finally, maps of the surface wave traveltimes
are projected onto the seismic network, and tomography inversion
is performed at discrete frequencies.

2 A R R AY G E O M E T RY A N D
N O I S E P RO P E RT I E S

The dense seismic array that provides the data used in this study
consists of 1108 (10-Hz) vertical geophones that were installed
in a ∼650 × 700 m2 configuration centred on the Clark branch
of the SJFZ southeast of Anza, California. Each row along the
x-direction has ∼55 sensors, with an inter-sensor distance of 10 m,
and a nominal separation between the rows in the y direction of
30 m (Fig. 1). The array recorded the ambient seismic noise (and
earthquakes) continuously over more than one month in May to
June, 2014. Inspection of the recorded waveforms reveals numerous
spikes and bursts that cover a large frequency band between 5 Hz
and 40 Hz (Figs 2 and 3). In addition to distinguishable seismic
events, the waveforms contain large sets of long bursts (Fig. 2b)
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Figure 2. (a) Normalized ambient seismic data recorded over 5 hr on sensor
R2307, and filtered below 50 Hz. The seismic signal shows both a continuous
series of impulsive spikes that correspond to small local earthquakes and
time-dispersed bursts that resemble creeping noise induced by the fault, as
expanded in panel (b).

Figure 3. Averaged power-spectral density obtained for sensor R2307 for
one day of recording (Julian Day 150).

that are typically grouped with the ambient seismic noise extending
down to 1 Hz. Despite the incoherent noise generated by the ocean
and by nearby sources (e.g. wind or human related), recent analyses
have suggested that most of the detectable impulsive events are
located below the surface (Ben-Zion et al. 2015).

As usual when dealing with ambient-noise correlations, the time
and frequency pre-processing was extensively experimented with
prior to the cross-correlation stage. The presence in the raw data of
both impulsive spikes and time-dispersed bursts made the choice
of the most appropriate pre-processing more complicated. We fi-
nally used one-bit time-domain normalization along with frequency
whitening in limited frequency bands [F − �F, F + �F] with �F
< F/3 to prevent the creation of signal harmonics caused by the
one-bit clipping in the frequency band of interest. Given the nu-
merous microseismic events in the noise recordings, the one-day

averaged cross-correlations show a strong contribution around time
t = 0 (Fig. 4a), which suggests that most of the coherent signals
were incoming from below the array and with very high apparent
velocities. Note that at frequencies between 3 and 5 Hz, the spatial
coherency extends over the whole array (more than 600 m) when
averaged over one day.

The main goal of this paper is to develop methodological tools for
performing surface wave inversion to retrieve subsurface structures
of fault zones despite the a priori unfavourable noise correlation
pattern. Consequently, some post-processing must be performed to
emphasize the surface wave contribution in the raw correlations.
To this end, we use the spatial discrete Fourier transform (from the
X–Y position domain into the Kx–Ky slowness domain) to mask
the strong contributions of the phases with large apparent velocities
(Fig. 4c).

After cancelling the wavefield associated with phase velocities
greater than 1000 m s−1 at each frequency, we see the emergence
of a circle in the Kx–Ky representation that is associated with sur-
face waves incoming from all directions (Fig. 4d). However, this
wavenumber filtering is imperfect due to strong local heterogeneities
present at and around the fault. Nevertheless, this spatial filtering re-
duces (more than it cancels) the amplitude of high-apparent-velocity
waves that dominate the surface wave amplitudes in the raw corre-
lations (Fig. 4a). In practice, for example, the wavenumber filtering
will not be efficient for incident low-velocity surface waves that are
locally scattered into higher-velocity body waves due the medium
heterogeneity. This bias is observed in the filtered Kx–Ky repre-
sentation (Fig. 4d) where the expected circle corresponding to the
surface wave contribution is still polluted by a random speckle
pattern that results from the surface wave interaction with local het-
erogeneities. Note also that some incident directions show higher
intensities than others, as confirmed later by the beamforming
results.

After the high-velocity mask is applied, we perform an inverse
spatial Fourier transform to return into the X–Y domain. This
wavenumber filtering operation leads to surface waves that are now
clearly visible in the cross-correlation pattern (Fig. 4b). To correct
all of the cross-correlation pairs among the network, such spatial
filtering must be applied to the 1108 cross-correlation patterns with
every reference station. This involves a series of ∼610 000 correla-
tion pairs, from which the high apparent-velocity contributions have
been removed. These spatially filtered correlations can be stacked
in 4-m-distance bins to obtain a first-order spatial representation
of the distance-versus-time correlated wavefield (Fig. 5). Such av-
eraging into incremental bins independent of the position of the
station pairs among the network amounts to considering a spatially
homogeneous medium, which is clearly not consistent with existing
knowledge of the fault-zone structure (Sharp 1967; Allam et al.
2014; Yang et al. 2014; Zigone et al. 2015). However, this approach
allows us to confirm the effectiveness of the wavenumber filtering
for the whole set of cross-correlation pairs, and to extract an aver-
aged phase velocity of 600 m s−1 for Rayleigh waves at 4 Hz in the
medium (Fig. 5b).

To investigate the additional general characteristics of the sur-
face wavefield, beamforming restricted to velocities lower than
1000 m s−1 was performed on the ambient-noise data at differ-
ent frequencies. To do so, a disk of 600 stations was defined at the
centre of the array, and the beamforming pattern was averaged for
1-hr-long records over 24 hr (Fig. 6).

Fig. 6 shows a polar-plot representation of the plane-wave beam-
former calculated for a surface wave model at the maximum ve-
locity output. As expected, the noise incident directions match the
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Figure 4. Representation of the correlation data in the position space and the wavenumber space before and after the spatial filter processing. (a) Normalized
one-day cross-correlations of the 1108 stations, with reference station R2307 (see Fig. 1). The raw ambient-noise signals are frequency whitened in the [3–5 Hz]
band before correlation. One-bit amplitude-related pre-processing was also applied to the raw data. The stations are sorted by increasing distance with respect
to the reference station R2307. Strong spatial coherence spreads over the whole network with coherent arrivals corresponding to high effective velocities. (b)
As for panel (a) after frequency–wavenumber filtering is applied to the raw correlations to cancel the low wavenumber (velocities > 1000 m s−1) arrivals
around t = 0. The surface wave contribution becomes visible, both on the positive and negative times of the correlations on the whole network in the [3– 5 Hz]
frequency interval. (c, d) Kx–Ky representations of the time-domain correlations shown in panels (a) and (b) after a 2-D spatial Fourier transform is applied.
For the sake of the representation, the intensity patterns shown in panels (a) and (b) are averaged over nine successive frequencies between 3 and 5 Hz, with
separation 0.25 Hz. To filter out the energy contribution that corresponds to low wavenumbers, a Gaussian-shaped mask is applied for velocities >800 m s−1

to the 2-D spatial Fourier transform at each frequency. As expected from panel (b), the frequency-averaged intensity pattern in panel (d) roughly reveals a
circle, which corresponds to the surface waves, with some notable azimuthal dependence in intensity. Note that the low wavenumber filtering operation divides
the maximum intensity in the Kx–Ky domain by a factor of eight. The angle θ corresponds to the main directions obtained after beamforming of the surface
waves (see Fig. 7).

observations made in Fig. 4(d). The ∼60 deg azimuth direction with
respect to North is typical of ambient noise in Southern California
(Hillers et al. 2013), and consistent with previous studies on seis-
mic noise at lower frequencies (<1 Hz) that traditionally indicate
the micro-seismic noise coming from the Pacific Ocean (Schulte-
Pelkum et al. 2004; Sabra et al. 2005b; Gerstoft & Tanimoto 2007;
Roux 2009; Hillers et al. 2013). On the other hand, we would expect
much more angular dispersion in the back-scattered energy at these
frequencies if the opposite direction emerged due to scattering or
reflections inside the fault zone. Our interpretation is that, at these
low frequencies, the backscattered signal is not due to the SJF itself
but more likely to local topography (mostly parallel to the fault) or
to other regional fault structures East of the SJFZ (as can be seen
from fig. 2 in Ben-Zion et al. 2015).

3 I T E R AT I V E WAV E L E T E X T R A C T I O N
U S I N G D O U B L E B E A M F O R M I N G

Given the beamforming results, it appears natural to focus on surface
wave extraction within receiver pairs aligned with the noise incident
directions. Benefitting from the dense array deployment, the strategy
here is to combine two subarrays of receivers between which all of
the cross-correlation pairs are computed to identify various wavelets
of interest and to further constrain the wavelet extraction (Fig. 1,
green circles).

The usefulness of DBF to identify and isolate different wave
arrivals has been successfully demonstrated in seismology (Rost
& Thomas 2002). When using source and receiver arrays, DBF re-
sults from underwater acoustics lead to high-resolution tomography
from the extraction of numerous multiply reverberated eigenrays
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Figure 5. Spatial-temporal representation of the averaged cross-correlations before and after spatial filtering. Fig. 4(a) shows the raw correlations with station
R2307 taken as a reference. When the reference is sequentially taken as each one of the 1108 stations, the total number of cross-correlation pairs exceeds
610 000. Assuming in the first-order approximation spatially uniform elastic properties of the ground, these correlations can be averaged into 4-m incremental
bins that range from 0 to 700 m. The bin-averaged raw correlations are shown in panel (a). As expected from Fig. 4(a), the dominant part is due to high-velocity
waves around t = 0, which might be due to body waves coming from the Fault at a depth below the array. (b) Built following the same binning procedure as
panel (a), but starting from the full set of low wavenumber filtered correlations as the single one generated in Fig. 4(b) using reference station R2307.

Figure 6. Polar-plot representation of the plane-wave beamforming output performed for Julian Day 150 and for maximum beamformer output at each
frequency: 800 m s−1 at 2 Hz, 650 m s−1 at 3 Hz and 590 m s−1 at 4 Hz. The beamforming was computed from 600 neighbouring stations located at the centre
of the network. The ∼60 deg azimuth with respect to North is typical of South California, and is consistent with previous studies on seismic ambient noise at
lower frequencies (<1 Hz) that traditionally indicate incident seismic noise coming from the Pacific Ocean. Note that the opposite direction also emerges from
the ambient seismic noise, which might be due to local topography (mostly parallel to the fault) or to other regional fault structures East of the SJFZ.

that propagate within a shallow-water ocean (Roux et al. 2008).
This previous study was extended to geophysics applications us-
ing surface arrays at the laboratory scale (De Cacqueray et al.
2011). This was then generalized to ambient-noise surface wave
imaging at the seismic scale using subarrays of seismometers
among the USArray (Boué et al. 2014) and three arrays of geo-
phones recently deployed on Piton de la Fournaise Volcano (Nakata
et al. 2016).

Subarrays are classically chosen to avoid overlap between el-
ements, which correspond to a ∼100-m centre-to-centre distance
for subarrays of 25 elements. The size and number of elements

in each subarray also results from a balance between several
constraints:

(1) We first need slowness resolution in order to separate surface
wave from body waves. By defining every subarray as the closest 25
sensors to every array element, we typically work with a subarray
size on the order of 90 m (slightly more for subarrays centred on
sensors located in the first 5 lines East of the Fault, see Fig. 1).
This provides efficient wavelet separation for surface waves and
other wave types as shown in the slowness-versus-time results (see
Fig. 8).
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Figure 7. (a) Iteration 0 corresponds to the initial set of 625 normalized cross-correlations between the two subarrays. In each panel, the cross-correlations
are numbered from 1 to 625 (along the y-axis) and sorted by increasing distance. The dashed line corresponds to the correlation associated with the centre of
the two green subarrays in Fig. 1 (centred in R2307 and R5207). Note that surface waves are clearly visible since the low wavenumber contribution is filtered
out from the raw correlations in the previous step. After extraction of the dominant wave through DBF (see Fig. 8a), the DBF-extracted wavelet is removed
from the 625 correlations to allow for the next DBF extraction. Here, iterations 0–3 [(a) to (d)] correspond to the DBF images in Figs 8(a)–(d). After each
DBF extraction, the phase velocity, group velocity and amplitude of the extracted wavelet are recorded. For the sake of representation, panels (a) to (d) are
normalized according to their maximum amplitudes, although the total energy decreases by a ratio of 2 between iteration 0 and iteration 3.

(2) Another constraint is the number of sensors in one subarray.
With 25 elements, the DBF process is performed from 25 × 25 =
625 cross-correlations which is sufficient to benefit from significant
array gain on coherent signals and not too large to avoid having
subarrays that spread on heterogeneous parts of the SJF.

(3) The last constraint involves the computation time of the whole
DBF process that increases significantly with the number of ele-
ments taken for every subarray pair.

As for any beamforming process, DBF involves delaying and
summing wavefields according to the appropriate phase velocities
(or slowness):

CDBF(t) =
∑
i, j

Ci j (t − δti j ), (1)

where CDBF is the DBF result obtained from the set of time-domain
cross-correlations Cij between every pair of sensors i, j among the
two arrays, and δtij is the DBF time delay for each sensor pair. As
two arrays are taken into account in the DBF process, local phase
velocities and local azimuthal directions should be considered in
the calculations of the time delays:

δti j (s1, θ1; s2, θ2) = s1
−−−→
A1

i A1
c · −→u1 − s2

−−−→
A2

j A2
c · −→u2 , (2)

where s1 and s2 are the local slowness at the two arrays, and
−−−→
A1

i A1
c

is the position vector between the centre of array 1 (A1
c ) and the

ith element of the same array (A1
i ). The same notations apply to

array 2 for
−−−→
A2

j A2
c . The unit vectors −→u1 = (cos θ1, sin θ1, 1) and

−→u2 = (cos θ2, sin θ2, 1) denote the azimuthal directions of the DBF
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Figure 8. The DBF algorithm projects the set of 25 × 25 = 625 correlations into the beam space. After DBF, each high-intensity spot in the slowness-
versus-time space corresponds to one spatially coherent wavelet identified among the whole set of cross-correlation pairs. From the beam maximum at each
iteration (green cross), one wavelet is computed in the time domain, as shown in Figs 9(b)–(e). At this stage, no correct identification of the extracted wavelet
is performed. Note that the beam maximum intensity decreases as the iteration increases, as expected from the iterative subtraction process described in Fig. 7.

projection. The two first components of −→u1 and −→u2 refer to the
horizontal plane, while the last dimension takes into account the
difference in the altitudes between sensors. Assuming similar slow-
ness (s1 = s2 = s) and azimuthal directions (θ1 = θ 2 = θ ) at the two
array locations, the DBF time delay simplifies to

δti j (s, θ ) = s
(−−−→

A1
i A1

c − −−−→
A2

j A2
c

)
· −→u = s

(−−−→
A1

i A2
j − −−−→

A1
c A2

c

)
· −→u ,

(3)

where the position vectors in the right parentheses refer to the vector
between two sensors i, j among each array, and the vector between
the two array centres. Note that according to eq. (3), sensors located
at the centre of the two arrays should not be time delayed.

Assuming a single slowness s and azimuthal direction θ at the
two subarrays (eq. 3) may lead to a bias in a very heterogeneous
medium (as the SJFZ) as the effective slowness’s may strongly vary
depending on the subarray position. This bias was evaluated from
a set of different subarrays among the network and was found to
be small compared to the slowness beam size (see the size of the
maximum intensity spot in Fig. 8a). We then validated this choice
that significantly reduces the computational cost of the DBF process.

To further optimize the DBF processing, we match first the di-
rections between the centre of the two subarrays 1 and 2 with the
incident-noise direction (Fig. 1). Examining the set of 25 × 25 =
625 cross-correlations between all of the pairs of 25 stations in
each subarray, sorted with distance (Fig. 7a), it appears that a single
apparent phase velocity can be used to compensate for travel-time

delays. We thus propose to use the following time delays in the DBF
process:

δti j (s) = s
(∣∣∣−−−→

A1
i A2

j

∣∣∣ −
∣∣∣−−−→
A1

c A2
c

∣∣∣
)

. (4)

Note that each of the 625 correlations is normalized prior to DBF
processing to provide the same weight for every station pair in the
beamforming process. This also means that a perfect slant-stack
summation would result in a maximum DBF amplitude of 1.

As indicated in eqs (1) and (4), the DBF projects the cross-
correlation pairs Cij(t) from the distance-versus-time space (Fig. 7)
to the slowness-versus-time domain (Fig. 8). At first glance, the
DBF pattern CDBF(t,s) reveals two intensity peaks at positive and
negative slowness (Fig. 8a), which correspond to the two wave fronts
observed in the cross-correlations for the positive and negative times
(Fig. 7a). The DBF analysis sorts out wavefield contributions with
different apparent phase velocities that might be blurred out in the
individual point-to-point correlations (Fig. 7a). In particular, when
comparing the point-to-point correlations between the centres of
the two subarrays (Fig. 9a) to the DBF correlation (Fig. 8a, green
cross, Fig. 9b), it is seen that the DBF processing removes some
strong bias in the travel-time propagation of the surface waves.
These ambiguities are due to weak arrivals in the raw correlations
that are superimposed on the expected surface waves, as previously
observed for a non-isotropic noise distribution in a complex and
reverberating environment (Snieder & Fleury 2010; Colombi et al.
2014).
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Figure 9. (a) Normalized point-to-point correlation between the centre of
the two subarrays in Fig. 1, namely stations R2307 and R5207 (Fig. 7(a),
dashed line). (b–e) DBF correlations obtained from iteration 0 to iteration 3.
The traveltimes are measured from the maximum of the envelope (red). The
group and phase velocities obtained for each DBF wavelet are as follows:
iteration 0—Vp = 574.6 m s−1, Vg = 384.1 m s−1; Iteration 1—Vp =
−576.5 m s−1, Vg = −395.7 m s−1. The two first iterations correspond
to Rayleigh waves from R2307 to R5207 (positive time) and from R5207
to R2307 (negative time), as expected from the correlation theorem in the
case of omnidirectional noise. The two DBF wavelets extracted at iterations
2 and 3 are spurious, and might be due to pre-processing artefacts or the
combination of the complex fault structure and the non-isotropic noise dis-
tribution. Note that the surface wave extraction would have been impossible
from the point-to-point correlation in panel (a).

Since the DBF is a linear process, the wavelet extraction is not
limited to the most energetic contribution, but can be iterated for
several apparent phase velocities, as illustrated by the iteration pro-
cess in Figs 7–10. The method works as follows. When one wavelet
is identified through an intensity maximum in the slowness-versus-
time DBF pattern (Fig. 8, green crosses), the DBF wavelet is com-
puted using the set of time delays that are associated with the appro-
priate slowness (Figs 9b–e). This wavelet is then isolated in a time
window and back-projected into the correlation-versus-time space
for all of the correlation pairs. The duration of the time window is
chosen according to the wave period and the frequency bandwidth
of the noise-whitening process. This allows the reconstruction of
the selected wavelet with constant amplitude for each station pair.
However, as can be observed from the raw correlations between two
subarrays (Fig. 7a), the amplitude pattern of each coherent wavelet
is not uniform from one sensor pair to the next one in an 25 × 25
configuration but shows a slow amplitude evolution with respect
to the channel number axis. This is particularly true for the two
wavelets selected at iterations 2 and 3 (Figs 7c and d), but it also

applies to the surface waves extracted at iterations 0 and 1. The
reason for this amplitude evolution could be most likely due to
the non-isotropic noise source distribution and the spatial hetero-
geneities in the medium.

In order to optimize the wavelet subtraction from the raw corre-
lation data, this amplitude change from pair-to-pair has to be taken
into account. One solution could have been to apply a mask on the
slowness-versus-time DBF representation outside of the beam inten-
sity associated with the selected wavelet (Fig. 8), and to reconstruct
the wavelet pattern on each sensor pair with time and amplitude
applying the inverse of the DBF transformation. This procedure
(DBF transform + mask + inverse DBF transform) is very similar
to wavenumber filter applied to the Kx–Ky diagram in Fig. 4. How-
ever, the shape of the mask in the slowness-versus-time domain must
adjust to the effective phase velocity of the selected wave. This wave-
dependent mask makes the wavelet reconstruction and subtraction
process unstable and inefficient. We therefor proceeded differently.
We reconstructed the time-domain wavelet by (1) selecting the phase
velocity maximum after DBF in the slowness-versus-time represen-
tation (see green cross at each iteration in Fig. 8) and then (2) ad-
justing the amplitude dependence of this wavelet along the channel
number axis through a third-order polynomial fit (Fig. 10) that mini-
mizes the residual energy after the wavelet subtraction process. The
wavelet extraction and subtraction process becomes then automatic
(not user-dependent), robust and stable, which is required to process
the ∼610 000 subarray pairs that can be taken out of this dense array
recording.

In practice, this means that the correlations at iteration 1 in
Fig. 7(b) are the direct subtractions of the correlations at itera-
tion 0 in Fig. 7(a) and the reconstructed wavelet at iteration 0 in
Fig. 10(a). To summarize this sequence of operations at each iter-
ation (Fig. 11): (1) DBF is performed on the correlations (Fig. 8);
(2) one wavelet is extracted and isolated from the DBF maxi-
mum (Fig. 9); (3) the correlations-versus-time pattern is recon-
structed for this wavelet and for all of the pairs with an optimized
pair-to-pair amplitude (Fig. 10); and finally (4) these wavelet-
driven correlations are subtracted from the original correlations
(Fig. 7).

Going back to the correlation patterns at each iteration (Fig. 7),
additional wavelets are clearly observed in the correlation data once
the dominant surface waves have been subtracted, in both the posi-
tive and negative times. Some of these wavelets arrive at late times
(i.e. with low group velocities) and with high apparent phase veloc-
ities (Fig. 10d). Some others arrive at early times and are superim-
posed with the direct surface wave arrivals (Figs 10a and c), resulting
in a potential bias in the traveltime extraction from a point-to-point
analysis. As suggested by figs 6–9 of Ben-Zion et al. (2015), these
might be due to multiple reverberations from horizontal and verti-
cal interfaces underneath and within the fault-zone structure. These
might also result, at least partially, from pre-processing artefacts
associated with the one-bit clipping applied to the ambient-noise
signals before cross-correlation.

In this analysis, up to eight iterations are performed for each
subarray pair, and the slowness, traveltimes (measured at the max-
imum of the DBF envelope) and amplitudes of the DBF maxima
are systematically recorded at each iteration. To distinguish be-
tween physical and non-physical wavelet extractions, we focus on
a set of subarrays that are centred on a line of receiver pairs that
is parallel to the noise direction (Fig. 1). Each red and black dot
represents the centre of a 25-geophone subarray, between which the
DBF iterative procedure was performed. Group and phase velocity-
versus-distance results are shown in Fig. 12 for frequencies F = 2,
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Figure 10. (a–d) Reconstructed wavelet for each of the 625 station pairs at each iteration (0 to 3), as obtained from the DBF extraction process. Each wavelet
contribution should be compared to the corresponding data-based correlations at each iteration in Fig. 7. Note the amplitude dependence of the reconstructed
wavelets along the 625 station pairs (especially for iterations 2 and 3) as the result of amplitude optimization based on a polynomial fit. The iterative subtraction
process is such that the set of correlations at iteration 1 in Fig. 7(b) is obtained from the subtraction of the correlations at iteration 0 in Fig. 7(a) and the
reconstructed wavelet at iteration 0 in Fig. 10(a).

Figure 11. Schematic representation using block diagrams of the iterative
DBF processing applied to the correlation data. Namely: (1) DBF is applied
on one subarray pair; (2) one wavelet is extracted and isolated for the slow-
ness obtained at the DBF maximum; (3) the correlations are reconstructed
for this wavelet and for all of the geophone pairs among the two subarrays;
and finally, (4) these wavelet-driven correlations are subtracted from the
original correlations before the next iteration is performed.

3 and 4 Hz. Group velocities are computed as the distance between
the subarray centres divided by traveltimes obtained at the maximum
of the DBF-extracted envelope for each wavelet (red curve in each
panel in Fig. 9). The phase velocities are plotted as the inverse of
the slowness, where the colour bar denotes the amplitude of each
extracted wave. Note that both positive and negative traveltimes
and slowness are superimposed on the same representation as the
absolute values of the group and phase velocities.

In Fig. 12(a), only wavelets with strong amplitudes, most likely
corresponding to Rayleigh waves, have been plotted with group
velocities slowly evolving with distance in agreement with the lo-
cation of the SJFZ. Phase velocities are generally higher, which
is expected for dispersive waves in a medium with increasing ve-
locity with depth. The DBF amplitudes of the extracted Rayleigh
waves, which indicate the spatial coherence between the subarrays,
decrease with increasing frequency. We also note a slight dispersion
between the group and phase velocity measurements for Rayleigh
waves at the same distance, which is due to weak fluctuations be-
tween the wavelet parameters in the positive and negative corre-
lation times. These uncertainties reflect the potential error of the
method, which appears to be limited to 10 per cent in this complex
geophysical environment when the subarrays are aligned with the
noise direction. Across the fault zone, variations in the group and
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Figure 12. Representation of the DBF-extracted parameters plotted as velocity versus distance at different frequencies for the subarray centres (red, black)
shown in Fig. 1. Group velocities are plotted in (a–c), and phase velocities are plotted in (d–f), for the DBF processing centred at 2, 3 and 4 Hz. At each frequency,
the colour bar corresponds to the maximum amplitude of the DBF wavelet. As expected from Figs 9(a) and (b) and Figs 10(b) and (c), the high-amplitude
DBF wavelets correspond to Rayleigh waves obtained from both the positive and negative times of the correlations. Note the smooth spatial and frequency
dependence of the Rayleigh wave velocities that reflects the spatial heterogeneity of the elastic parameters perpendicular to the fault.

phase velocities with frequency and distance provide evidence for
the strong subsurface heterogeneity of the SJFZ. This was seen in
the early results of Ben-Zion et al. (2015) and should be further
quantified by surface wave tomography.

To illustrate the potential of the method, travel-time extraction
is performed for Rayleigh waves between one reference geophone
at the centre of the dense array and all of the possible geophones
with an exclusion distance of 100 m. As for the DBF data shown
in Fig. 12, each ‘geophone’ in Fig. 13 actually refers to the centre
of a 25-element subarray. The exclusion distance was set to avoid
superimposition between two subarrays at short distances. Only
DBF results with amplitudes larger than a threshold value are kept
in this analysis, thus focusing the wave selection on the dominant
Rayleigh waves. This coherence threshold was set to 0.8 at 2 Hz, 0.7
at 3 Hz and 0.45 at 4 Hz. The smooth maps in Fig. 13 indicate that
the travel-time extraction is consistent over the whole array, even

for pairs of subarrays that are not aligned with the ambient-noise
direction. However, we note that subarray pairs that are orthogonal
to the noise direction are missing at low frequencies (Figs 13a and
b, blank areas), where the noise is very directional. These maps of
the traveltimes at different frequencies (Figs 13a–c) can form the
main ingredient for eikonal surface wave tomography (Roux et al.
2011; Lin et al. 2013; Mordret et al. 2013). If the medium is ho-
mogeneous, the travel-time maps would show concentric coloured
circles centred at the reference station, which is not the case. The
traveltime elongations along the y-axis (parallel to the fault zone)
confirm the structural heterogeneities perpendicular to the SJFZ.
When applied successively to all of the reference geophones, a total
of more than 400 000 Rayleigh wave traveltimes [484 000 at 4 Hz,
438 000 at 3 Hz and 427 000 at 2 Hz] are extracted among the
614 000 potential geophone pairs than can be taken out of the 1108
geophone array (Fig. 14).
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Figure 13. Maps of the traveltimes for Rayleigh waves extracted from DBF processing between one subarray centred at the middle of the dense array and
all possible subarrays selected among the dense array. The maps correspond to three different frequencies (a–c). Rayleigh waves are selected through their
dominant amplitude in the DBF processing. Note that each subarray is represented by its central geophone as in Fig. 1 (red and black circles).

Figure 14. Normalized group velocity distribution at each frequency ob-
tained after surface wave extraction from every subarray pair among the
dense array network. The group velocities are calculated from the distance
between the centre of each subarray pair and the extracted traveltimes (max-
ima of the wavelet envelopes at each iteration in Fig. 9). At each frequency,
the distribution is calculated for 20 m s−1 bin intervals and normalized by
the total number of group velocities with 427 000 at 2 Hz, 438 000 at 3 Hz
and 484 000 at 4 Hz.

Fig. 15 shows the Rayleigh wave group velocity maps obtained
at 2, 3 and 4 Hz as a result of the traveltime inversion on a reg-
ular horizontal grid with steps of 15 m. A simple linear inversion
for the slowness was performed on a random selection of 20 000
arrival times (Barmin et al. 2001). This assumes straight rays as
propagation paths, and an a-priori error covariance matrix that de-
creases exponentially with distances over 50 m. The weight of the
spatial smoothing was classically chosen at the maximum curvature
of the standard trade-off analysis (L-curve) based on the misfit value
(Hansen & O’Leary 1993). The inversion started from a homoge-
neous initial model with a group velocity of 480 m s−1 at 2 Hz,
425 m s−1 at 3 Hz and 360 m s−1 at 4 Hz, according to the distribu-
tion of group velocities plotted in Fig. 14. A total of 100 inversions
were performed, and Fig. 15 shows the average group velocities
for the positions where the standard deviation is less than 20 per
cent of the average, which almost corresponds to the whole of the

surface array. At each frequency, each inversion produces a residual
variance reduction of ∼98 per cent relative to the arrival times for
the homogeneous model. Note that similar surface wave inversion
could be performed for phase velocities instead of group velocities
from the collection of phase velocities extracted for each subar-
ray pairs from the DBF process (Figs 12d–f). For sake of clarity
and simplicity, we limited the representation to maps of traveltimes
in Fig. 13 and to the corresponding map of group velocities after
inversion in Fig. 15.

The ratio of the velocities divided by the frequency range used
suggests that the observations characterize the top 75 m to 350 m of
the crust. Topography was not taken into account in the inversion (as
suggested in Pilz et al. 2013), but the correlation between the group
velocity maps and the topography is not obvious (Fig. 15d). The
results show strong lateral variations across the fault traces. The red
low-velocity zone near the right fault line corresponds to the fault
zone trapping structure identified in Ben-Zion et al. (2015) using
active experiment data. The results for increasing frequencies have
features that correspond progressively to shallower depth. The 2 Hz
results (Fig. 15a) show a low velocity zone between the two fault
traces in the northwest part of the array but not in the southeast. This
discontinuous low velocity zone is less clear at the higher frequency
images (Figs 15b and c), so it may have little evidence in the surface
geology. The red zone to the right of the fault traces at 2 and 3 Hz
is correlated with the small local topography of highly damaged
(partially pulverized) rocks, and the red zone to the left of the fault
traces (shown differently at the different frequencies) corresponds
to a small sedimentary basin.

4 D I S C U S S I O N

This paper presents a new approach for wave separation that allows
the derivation of detailed velocity images in complex environments
from continuous dense recordings of ambient seismic noise. The
core idea is associated with using an iterative technique that involves
DBF between various subarrays to extract the different phases that
are in the correlation results and to use the different phases for struc-
tural imaging. The initial results presented in Figs 12–15 illustrate
both the structural complexity in the area and the richness of infor-
mation that can be provided by the spatially dense data and the used
imaging technique. The analysis in this study focuses on Rayleigh
surface waves, but we envision that reflected and refracted body
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Figure 15. (a–c) Group velocity maps obtained at 2, 3 and 4 Hz after surface wave inversion from more than 400 000 traveltimes on a 15-m-spacing regular
grid. The circles in the background correspond to the sensors’ location. The black lines indicate the surface traces of the faults and correspond to the fault
directions associated with the SJFZ. Strong lateral velocity variations are observed across the fault structure that does not appear to correlate with the local
topography (d).

waves can also be isolated between subarrays through DBF, and
combined with surface waves for joint inversion of the subsurface
material.

Additional structural information might be obtained by perform-
ing combined inversions between group and phase velocities using
a wider range of discrete frequencies. The close spacing between
the sensors allows the extraction of local velocity information on
the shallow material at tens of Hz. Ben-Zion et al. (2015) provided
an example of Rayleigh wave group velocities at 50 Hz obtained
along a fault-normal line of the nodal array. This can be generalized
with array processing of the type carried out here. The surface wave
group velocities can be inverted to 3-D models of shear-wave veloc-
ities using Bayesian tomography inversion for all of the geophone
pairs, similar to what was done in the context of Fig. 14, or using
eikonal tomography performed from the travel-time maps obtained
for each geophone (Lin et al. 2013; Mordret et al. 2013). A future
study will focus on this objective, with an overall goal of imaging
the 3-D structure of the SJFZ from the very shallow sub-surface to
depths of ∼500 m.

From a first 3-D model of the SJFZ, we will be able to compute
numerically higher-order surface wave arrivals and also locally scat-

tered body-waves. It will then be possible to revisit the weak arrivals
extracted at iterations 2 and 3 (see Figs 8 and 9) and match them
with the numerically predicted observations. We also note that a
single day of ambient noise recordings was enough to retrieve high-
amplitude correlations in the frequency band of interest. Equivalent
results could be obtained with shorter ambient-noise intervals (down
to 1 hr), as DBF provides significant array gain and should compen-
sate for the loss of coherence due to correlations on limited time
recordings. The production of repeated hourly based 3-D images
of the SJFZ can be used to monitor the structural evolution of the
shallow part of the fault. These topics will be the focus of future
studies.
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 by guest on June 16, 2016
http://gji.oxfordjournals.org/

D
ow

nloaded from
 

https://ciment.ujf-grenoble.fr
https://ciment.ujf-grenoble.fr
http://gji.oxfordjournals.org/


992 P. Roux et al.

region (GRANT CPER07_13 CIRA: http://www.ci-ra.org) and
France-Grille (http://www.france-grilles.fr). We thank Dan Hollis
and Mitchell Barklage from NodalSeismic. The paper benefitted
from comments by Norimitsu Nakata and an anonymous referee.

R E F E R E N C E S

Allam, A.A. & Ben-Zion, Y., 2012. Seismic velocity structures in the South-
ern California plate-boundary environment from double-difference to-
mography, Geophys. J. Int., 190, 1181–1196.

Allam, A.A., Ben-Zion, Y., Kurzon, I. & Vernon, F.L., 2014. Seismic velocity
structure in the Hot Springs and Trifurcation Seismicity Cluster Areas of
the San Jacinto Fault Zone from double-difference tomography, Geophys.
J. Int., 171, 2993–3011.

Barmin, M., Ritzwoller, M. & Levshin, A., 2001. A fast and reliable method
for surface wave tomography, Pure appl. Geophys., 158(8), 1351–1375.

Ben-Zion, Y., 2008. Collective behavior of earthquakes and faults:
continuum-discrete transitions, evolutionary changes and corre-
sponding dynamic regimes, Rev. Geophys., 46, RG4006, doi:
10.1029/2008RG000260.

Ben-Zion, Y. et al., 2015. Basic data features and results from a spatially-
dense seismic array on the San Jacinto fault zone, Geophys. J. Int., 202,
370–380.
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