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[1] We investigate in a systematic parameter space study dilatant effects on slip evolution
of a fluid-infiltrated fault in the continuum limit. The fault is governed by rate- and
state-dependent friction and an empirical law for porosity evolution. We focus on the
response of systems as a function of fluid-related parameters, such as the degree of
overpressurization, dilatancy and diffusivity. This study emphasizes the exploration of the
parameter space for homogeneous along-strike properties to investigate the evolution of
spatiotemporal slip depending on hydromechanical processes. Three types of responses
emerge. First, system-wide unstable stick-slip develops for drained conditions, and for
undrained conditions if mechanisms leading to an increase in pore space are less effective.
The critical stiffness depends on hydraulic diffusivity and dilatancy, which is shown to
correspond with interevent times of simulated stick-slip events. During instabilities the
evolution of hydraulic variables differ significantly between drained and undrained
conditions. Second, stable creep is a result of dilatant processes. Third, systems situated in
transitional stability regimes develop nonuniform slip pattern in space and time, revealing
a possible explanation for rupture termination and observed stable afterslip. Although
these patterns are produced by models located in transition zones of the parameter space,
the occurrence of heterogeneous slip evolution is persistent for an extensive range of
parameter values. Since transition zones contain an broad range of plausible conditions in
the crust, they do not represent extreme cases.
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1. Introduction

[2] The role of fluids is well established as very important
in the earthquake process but not well understood. Obser-
vational, laboratory, and numerical studies suggest that fluid
related processes are responsible for a wide range of
phenomena related to faulting. Examples of fluid-driven
aftershocks [Nur and Booker, 1972; Bosl and Nur, 2002;
Miller et al., 2004; Piombo et al., 2005, and references
therein] reveal the importance of fluid flow in the crust
associated with main shocks. Migration and redistribution
of fluids is also reported to trigger earthquake swarms
[Waite and Smith, 2002]. Remotely triggered earthquakes
occur preferentially in geothermal and volcanic areas,
suggesting that fluids are important in explaining this type
of seismic activity [Hill et al., 1993; Husen et al., 2004].
Another detected phenomenon stressing the mechanical
importance in earthquake nucleation are elevated fluid
pressures at the hypocenter region of the M 7.2 1995 Kobe
earthquake, Japan [Zhao et al., 1996]. Compartmentalized

high fluid pressures [Byerlee, 1993] are supported in part by
seismic and drilling experiments along a decollement near
Barbados [Moore et al., 1995; Fisher and Zwart, 1996].
Field evidence implies the formation and destruction of low
permeability/diffusivity seals to drive pore pressure in
excess of hydrostatic [Sibson, 1994]. Laboratory experi-
ments [Sleep and Blanpied, 1992; Blanpied et al., 1998a;
Lockner and Byerlee, 1994] unveil mechanisms responsible
for the development of overpressured pore fluid states that
might act as nucleation mechanisms for earthquakes, lead-
ing to a fault valve behavior [Sibson, 1992; Cox, 1995].
Three important mechanisms of porosity reduction have
been identified: (1) Plastic pore closure due to ductile
creep [Sleep, 1995], which is applied in the present study;
(2) stress induced dissolution and redeposition in pores; and
(3) crack healing and sealing, i.e., local redistribution of
solid material [Walder and Nur, 1984; Nur and Walder,
1992]. Moore et al. [1994] investigated a corrosive effect of
high pressure/temperature conditions leading to formation
of impermeable seals that effectively trap pore fluids in the
fault zone, which is a fundamental premise to explain
mechanical properties of weak fault zones [Rice, 1992;
Faulkner and Rutter, 2001]. Existing fluids, their migration
and related poroelastic effects alter stress states in the crust
and are thus an important trigger mechanism for earth-
quakes [Byerlee, 1993, 1990; Beeler et al., 2000; Cocco and
Rice, 2002].
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[3] Several numerical studies [Lockner and Byerlee,
1995; Segall and Rice, 1995; Miller et al., 1996; Sleep,
1997; Taylor and Rice, 1998; Miller et al., 1999; Chambon
and Rudnicki, 2001; Fitzenz and Miller, 2001] outlined
principal mechanical implications of crustal pore pressure
regimes in excess of hydrostatic. To pursue previous work,
we focus on the role of dilatancy in active faulting [Lockner
and Byerlee, 1994; Rudnicki and Chen, 1988; Chambon
and Rudnicki, 2001] and investigate effects of hydrome-
chanical properties on spatiotemporal slip evolution of a
two-dimensional (2-D) vertical strike-slip fault plane em-
bedded in a homogeneous half-space. More specifically, we
apply the formalism of a single degree of freedom elasto-
hydraulic model developed by Segall and Rice [1995] to the
geometry of an extended 2-D fault plane used by Rice
[1993] and in other purely elastic models [Tse and Rice,
1986; Ben-Zion and Rice, 1995, 1997; Rice and Ben-Zion,
1996]. Hence the present study expands ideas from existing
1-D, 2-D, and 3-D faulting models. The simulated evolution
of seismicity depends on fluid related processes in response
to pore space compacting mechanisms on a two-
dimensional plane [e.g., Lockner and Byerlee, 1995; Miller
et al., 1996, 1999]. In contrast to previous elastohydraulic
studies we solve governing equations in the continuum
limit. Therefore results presented here are not dominated
by the spatial discretization of the model space. Although
the model design allows investigations of natural likely
heterogeneous parameter distributions we apply only ho-
mogeneous parameter distributions along strike. Heteroge-
neous distributions of hydraulically important quantities are
explored by Hillers and Miller [2006].
[4] We perform numerical experiments to simulate slip

evolution of fault zones in response to different degrees of
hydraulic connectivity to the surrounding pore pressure
regime. Physical evidence for high diffusivities between
fault zone and surrounding medium at all stages of the
seismic cycle originate in fracture related flow paths.
Contrary, experimental results indicate the formation of
low-permeability seals between fault gouge and the country
rock. The fault may remain sealed indefinitely even though it
may experience continuous creep or earthquakes [Blanpied
et al., 1992]. As a consequence, diffusivity has been shown
to vary over several orders of magnitude [Caine et al., 1996;
Faulkner and Rutter, 2001], even along a single fault
structure such as the Median Tectonic Line, Japan [Wibberly
and Shimamoto, 2003]. To incorporate this knowledge about
naturally occurring ranges in permeability, we make signif-
icant approximations in the formation and maintenance of
hydraulically isolated fault planes, but we demonstrated that
these approximations have substantial supporting evidence.
As worked out by Taylor and Rice [1998] analytically,
stabilizing dilatant strengthening effects occurring in an
overpressured fault might be counteracted by an expansion
of pore fluids by shear heating. To limit the present study, we
do not incorporate temperature-dependent processes so that
possible further weakening mechanisms are not considered
here.
[5] The paper is organized as follows. First, we outline

the conceptual model which then is translated into its
numerical representation. We introduce the governing equa-
tions for friction, pore pressure and porosity evolution
necessary to simulate processes of interest by emphasizing

their application to the extended 2-D planar fault. We then
discuss a typical model implementation to illustrate the
effect of hydraulic parameters on the continuum limit
approach. Some constant parameter settings will be intro-
duced before we present theoretically derived stability
regimes. Main results will be discussed within the frame-
work of these regimes, starting with comparisons of end-
member cases to published results. The evaluation of model
responses in transition zones is given in section 2, in which
we analyze the effect of diffusivity on interevent times
before we focus on dilatancy related processes. Before we
conclude, obtained results will be compared to existing
models and viewpoints.

2. Conceptual Model

[6] The conceptual model is an extension of the models
discussed by Rice [1993] and Segall and Rice [1995] to a
fluid-infiltrated two-dimensional vertical strike-slip fault
plane embedded in an infinite elastic half-space with rigidity
G = 30 GPa and shear wave velocity vs = 3 km s�1. The
fault is governed by rate- and state-dependent friction,
dilatancy, and pore compacting mechanisms. Slip u is
calculated in the uppermost 24 km of the fault which is
driven by aseismic plate movement of v1 = 35 mm yr�1 at
its downward extension (Figure 1 and notation section).
Pressure p of fluids filling the open pore space f in the fault
zone is connected via effective diffusivity c* to the pore
pressure regime in the surrounding medium, p1. Both
pressure regimes are assumed to equilibrate over an implicit
length scale LD, which can be interpreted as the thickness of
the fault bounding walls or connected damage zone.
[7] Hydraulic diffusivity is assumed to be constant and

homogeneous across the fault plane, i.e., permeability is
invariant throughout the seismic cycle. Possible changes in
hydraulic diffusivity during slip episodes because of tem-
perature and normal stress changes are ignored. Experimen-
tal [Zhang and Tullis, 1998; Zhang et al., 1999, 2001] and
field studies [Sibson and Rowland, 2003] reveal a highly
anisotropic permeability structure of fault zones with higher
fluid flow inside the fault than perpendicular to the fault
walls, leading to the formation of a conduit in the fault core.
As demonstrated by Yamashita [1998], the expected fluid
migration has important implications on the fault’s seismo-
genesis. However, the focus of this study is the impact of
certain permeability regimes in the fault bounding rocks on
slip evolution. We thus follow a simplified approach by
neglecting possible fluid flow in the fault zone. Pore
pressure redistribution is a function of connectivity to the
pressure state in the host rock under sufficiently drained
conditions. The importance of hydraulic parameters on
seismicity are demonstrated in the analysis of a lumped
parameter model, where differences of responses between
effectively drained and undrained models were investigated
[Segall and Rice, 1995].
[8] If a fault or part of a fault is overpressured, it must be

continuously supplied with a fluid pressure source if the
overpressure is to be maintained, otherwise pore pressure
regimes will equilibrate for c* > 0 yr�1. Possible pressure
sources are a direct fluid source at depth, dehydration, or the
reduction of the available pore space [Miller et al., 1999].
We adopt the compaction formalism derived by Segall and
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Rice [1995] to fit data obtained in drained experiments by
Marone et al. [1990], noticing that this particular dilatancy
constitutive law has been shown to produce only small
increases in fault zone pore pressure. The present model
allows the investigation of the long-term seismic response
to external loading over several cycles, and a qualitative
analysis of specific slip events. We focus on the effect of
different fluid-related parameters on spatiotemporal slip
evolution. These parameters are the effective hydraulic
diffusivity, c*, a dilatancy coefficient, e, and the degree of
overpressurization, l = p/sn, where the normal stress sn is
assumed to be lithostatic. A translation of the conceptual
model into numerical tractable evolutionary equations for
shear stress t, state q, slip velocity v, pore pressure p and
porosity f is derived in section 3.

3. Numerical Model

3.1. Stress-Slip Relation

[9] Figure 1 shows the model geometry and coordinate
system of a vertical strike-slip fault plane in a 3-D
elastic medium following Rice [1993], Ben-Zion and Rice
[1995, 1997], and Lapusta et al. [2000]. The evolution of
slip, u(x, z, t), on the fault plane y = 0 is associated with a
redistribution of shear stress, t(x, z, t). In the discretized
case, the resulting integral relation connecting u and t can
be expressed by a set of linear equations based on the quasi-
static elastic solution for uniform slip over a rectangular
dislocation cell in an elastic half-space [Chinnery, 1963]

tij tð Þ ¼ t0 þ trij tð Þ � vij tð Þ h0: ð1Þ

[10] Here, t0 is a background stress value chosen to keep
tij > 0 in cases where slip is possibly overshooting, but t0

has no influence on the evolution of the system. Shear stress
redistribution due to loading and slip on the fault is denoted
by tij

r (t) = SkSlKji�kj,j,l(v
1 t � ukl(t)). Indices i, k and j,

l denote cell locations on the numerical grid along strike and
depth, respectively. The elastostatic kernel (or stiffness
matrix) K relates the slip at cell kl, ukl, to change of stress
at cell ij, tij, at some time t, and was calculated assuming 10
periodic repetitions of the fault along strike to approximate
infinite periodic boundary conditions. A constant driving
plate velocity, v1, is imposed at the downward extension of
the fault and _uij(t) = vij(t) is the slip rate of a certain cell.
The term h0 in equation (1) accounts for seismic radiation
damping and is equal to G/(2vs) [Rice, 1993]. Including this
factor makes the description quasi-dynamic, since it incor-
porates the elastodynamic limit result for any instantaneous
changes in tij(t) and vij(t). It also has the advantage of
allowing stable calculations to be carried through dynamic
instabilities, without requiring the computationally expen-
sive calculations of the exact elastodynamic solution per-
formed by Ben-Zion and Rice [1997], Lapusta et al. [2000],
and Lapusta and Rice [2003].

3.2. Friction

[11] To describe the frictional resistance of two adjacent
fault walls, we use the laboratory derived rate- and state-

Figure 1. The 2-D vertical strike-slip model fault plane embedded in a 3-D elastic half-space. The
fault’s response is governed by rate-and-state friction and an empirical law for pore compaction. We use
homogeneous hydromechanical properties along strike. The fault is loaded by aseismic slip rate, v1, at its
downward extension (light grey area). Pore pressure in the fault, p, is connected via effective hydraulic
diffusivity, c*, to the pore pressure state in the crust, p1. Slip is calculated over a depth range of Zdepth =
�24 km, where governing equations apply (dark grey area). The periodic repeat distance along strike is
Xlength = 100 km, unless stated otherwise.
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dependent friction formulation. We apply the standard
Dieterich-Ruina description of the friction coefficient, m(x,
z, t) [Dieterich, 1979; Ruina, 1983], which depends on
sliding velocity, v(x, z, t), and a state variable, q(x, z, t),

m x; z; tð Þ ¼ m0 þ a zð Þ ln v x; z; tð Þ
v0

� �
þ b zð Þ ln v0 q x; z; tð Þ

L

� �
: ð2Þ

The state variable is interpreted as a measure of maturity of
contacts on a fault surface. For the Dieterich-Ruina
(‘‘slowness’’ or ‘‘ageing’’) form of the law, the state
variable evolves according to

@q x; z; tð Þ
@t

¼ 1� v x; z; tð Þ q x; z; tð Þ
L

: ð3Þ

In equation (2), m0 is the nominal friction, a and b are
temperature and hence depth-dependent frictional scaling
parameters (Figure 2a), L is a critical slip distance, and v0 =
v1 is a normalizing constant. The characteristic slip
distance L is interpreted as a length scale over which a
new population of contacts between two surfaces evolves.
Laboratory values of L depend on the fault roughness and
gouge width [Marone et al., 1990]. Typical values in rock
sliding experiments done to date are in the range 10�6 m to
5 � 10�4 m [Ben-Zion, 2003]. The size of L determines a
critical spatial dimension of a process or nucleation zone, h*
[Dieterich, 1992; Rice, 1993; Rubin and Ampuero, 2005],
and to solve the problem in the continuum limit it is
necessary to use h 	 h*, where h is the numerical cell size
[Rice, 1993]. This places strong constraints on the
computational efficiency, since cpu time scales with the

number of cells. Thus calculating slip histories within
the continuum framework can be done at present only for
some scaled up versions of laboratory values of L. The
coefficient of friction, m, relates the shear stress on a fault, t,
to the effective normal stress (Figure 2b), se = sn � p, via

t x; z; tð Þ ¼ m x; z; tð Þ sn zð Þ � p x; z; tð Þð Þ; ð4Þ

Inserting equation (2) into equation (4) and differentiating
the resulting equation of motion with respect to time leads
to the time-dependent velocity evolution

@v x; z; tð Þ
@t

¼ h
se x; z; tð Þ þ

a zð Þ
v x; z; tð Þ

� ��1



_tr x; z; tð Þ þ m x; z; tð Þ _p x; z; tð Þ

se x; z; tð Þ

�
� b zð Þ _q x; z; tð Þ

q x; z; tð Þ

!
;

ð5Þ

where overdots denote time derivatives. We use the
effective damping parameter h = fh � h0, with fh being
some factor controlling quasi-dynamic (fh = 1) or over-
damped quasi-dynamic (fh � 1) simulations. For con-
sequences on slip evolution with fh � 1 see Rice [1993].
Temporal changes in shear stress, _tr, are given by the sum
over velocity differences, multiplied by the stiffness kernel
from equation (1), state evolution _q is described by equation
(3) and hydraulic properties _p and _f evolve in a way now
described.

3.3. Pore Pressure Redistribution

[12] We refrain from reevaluating the derivation leading
to the applied constitutive law of pore pressure and porosity

Figure 2. Depth dependence of relevant parameters used in the simulations. (a) Frictional scaling
parameters a, b, and a � b. (b) Lithostatic normal stress, sn, hydrostatic gradient, phyd, and pore pressure
profiles obtained for ~p = [50, 100, 125] MPa, respectively, using p(z) = max [phyd(z), sn(z) � ~p].
(c) Corresponding l = p/sn profiles.
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evolution developed by Segall and Rice [1995]. Instead, we
outline the main assumptions and rewrite the resulting
equations in the framework of the present coordinate
system. A scalar specific discharge per unit area, q, can
be related to pore pressure gradient causing flow via
Darcy’s law

q ¼ �rf
k
n
@p x; y; z; tð Þ

@y
; ð6Þ

where rf is the fluid density, n the dynamic pore fluid
viscosity and k is the scalar permeability (i.e., the ability of
the rock to transmit fluid through its connected pore space,
f). Continuity of fluid mass per unit volume m = frf is
required, and by distinguishing between elastic and plastic
pore deformation the resulting change in porosity can
be written as the sum of an elastic and plastic (denoted by
_f(x, z, t)) component. Currently, we ignore possible shear
heating effects [Blanpied et al., 1998b] on pore pressure
change, which could counteract rapid sliding induced
compressibility of the pore fluid by its thermal expansion
[Taylor and Rice, 1998; Andrews, 2002; Garagash and
Rudnicki, 2003a, 2003b]. The irreversible porosity reduc-
tion acts as a direct source term in the diffusion equation

@p x; y; z; tð Þ
@t

¼ c
@2p x; y; z; tð Þ

@y2
�

_f x; z; tð Þ
b

; ð7Þ

where b is the porosity times the sum of fluid and elastic
pore compressibility, respectively. Although b is a function
of the evolving pore space, f, we follow Segall and Rice
[1995] and Taylor and Rice [1998] and use b = 5 � 10�4

MPa�1 = const in our numerical experiments. This value
has been obtained by Segall and Rice [1995], choosing
f = 0.05 = const from an interpretation of data byMarone et
al. [1990]. We use 10�2 MPa�1 for the elastic pore
compressibility after David et al. [1994], and 5 � 10�4

MPa�1 for the fluid compressibility. The parameter c =
k(nb)�1 denotes hydraulic diffusivity. It has the unit
[L2T�1] and is thus the inverse of that amount of time over
which two pressure regimes, p and p1, separated by a
medium with property c, will be equilibrated. This
medium is assumed to have a certain spatial dimension
and thus a characteristic diffusion length, LD. Physically it
can be interpreted as being a cemented border bounding an
active fault zone with lower permeability than either the
fault or the surrounding rock mass. Implicitly assuming
this length scale, the effective hydraulic diffusivity scales
to c* = c/LD

2 . We consider potential fluid flow only in the
y dimension perpendicular to the fault, which simplifies
@2p(x, y, z, t)/@y2 to (p1(z) � p(x, z, t))/LD

2 . Using effective
diffusivity [Segall and Rice, 1995], equation (7) can thus
be written as

@p x; z; tð Þ
@t

¼ c� p1 zð Þ � p x; z; tð Þð Þ �
_f x; z; tð Þ

b
: ð8Þ

In the following analysis we focus on the difference in slip
evolution between drained (c* ! 1) and undrained faults
(c* ! 0).

3.4. Porosity Evolution

[13] The derivation of the constitutive law for plastic
porosity changes is based on laboratory experiments by

Marone et al. [1990] and Lockner and Byerlee [1994]. They
performed velocity stepping experiments in which the
porosity changes were measured under nominally drained
( _p = 0) conditions. Segall and Rice [1995] interpreted these
observations from the viewpoint of the steady state concept
in soil mechanics. At constant slip speed the porosity f
evolves over the same length scale, L, as the state variable q
toward a steady state value fss

@f x; z; tð Þ
@t

¼ � v x; z; tð Þ
L

f x; z; tð Þ � fss x; z; tð Þð Þ; ð9Þ

where fss follows

fss x; z; tð Þ ¼ f0 þ e ln
v x; z; tð Þ

v0

� �
ð10Þ

and f0 and e denote a reference porosity and the dilatancy
coefficient, respectively.
[14] The system’s response is thus governed by five

interdependent first-order ordinary differential equations in
the five parameters friction m, state variable q, slip rate v,
pore pressure p and porosity f

_m ¼ _m v; q; _v; _q
� �

_q ¼ _q v; qð Þ
_v ¼ _v v; q; p; m; _p; _q; _tr

� �
ð11Þ

_p ¼ _p p; _f
� �

_f ¼ _f v; fð Þ:

3.5. Computation Technique

[15] We solve the set of six resulting first-order ordinary
differential equations (equation (11) plus _u = v) using an
implicit Runge-Kutta (RK) method for stiff systems
with adaptive step size control, RADAU5, by Hairer and
Wanner [1996]. The present geometry allows the use of the
fast Fourier transform (FFT) to calculate the along-strike
contribution of the stress redistribution, tr, executing a
matrix multiplication including the stiffness kernel K [Rice,
1993; Stuart and Tullis, 1995; Rice and Ben-Zion, 1996].
Details of the numerical procedure and specific numerical
parameter choices can be found in the appendix of Hillers
[2006]. Certain simulations developing high slip velocities
(108 m yr�1) during system-wide instabilities with fh =
1 took up to 10 days of cpu time on a Compaq TruUnix
700 MHz machine, due to the computationally expensive
implicit RK scheme.

4. Model Implementation

[16] To ensure that simulated slip evolutions are indepen-
dent of the spatial discretization of the numerical grid, the
condition h 	 h* must hold to solve the governing
equations in the continuum limit [Rice, 1993]. Here, h* is
a critical cell size that is related to the self-stiffness of the
most critical cell in the grid, kcr. For the current elastohy-
draulic problem the general critical stiffness has been
derived to [Segall and Rice, 1995; Taylor and Rice, 1998]

kcr ¼ 1

L
se b� að Þ � em0

b
F c�ð Þ

� �
; ð12Þ
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where F(c*) varies nonlinearly between 0 (for c*! 1) and
1 (for c* ! 0). In the former, drained (d), case kcr

approaches the value for purely elastic problems obtained
by Ruina [1983], Rice and Ruina [1983], and Gu et al.
[1984], kd

cr = se(b � a)/L. Hence, in the drained limit, the
critical cell size h*d becomes [Rice, 1993]

h*d ¼
2GL

pse b� að Þmax

: ð13Þ

In the latter, undrained (u), case the critical spring stiffness
ku
cr is a function of em0/b, making it thus sensitive to porosity
controlling parameters

kcru ¼ 1

L
se b� að Þ � em0

b

� �
: ð14Þ

Following the line of argument for the derivation of h*d, the
critical cell size for undrained conditions h*u has been
found to [Taylor and Rice, 1998]

h*u ¼ 2GL p se b� að Þmax�
em0
b

� �� ��1

: ð15Þ

Now that two critical cell sizes h*u and h*d exist for the
undrained and drained limit, respectively, their relative
value has to be determined to fulfill the continuum limit
restriction h	 min[h*u, h*d]. On the basis of the examination
of the denominator of equation (15), Taylor and Rice [1998]
deduced that in regions where h*u is positive, h*d will always
be smaller of the two possible critical cell sizes. Thus h*u �
h*d always holds true and the requirement h 	 h*
approaches h 	 h*d.
[17] Beyond its numerical importance, h* is found to

have a physical interpretation in that it determines the
nucleation size of model earthquakes [Dieterich, 1992;
Lapusta et al., 2000; Rubin and Ampuero, 2005]. Equation
(15) reveals that any choice for L has a direct effect on the
smallest earthquake which can be generated by a model
with a given spatial discretization. With the experimentally
derived values for L cited above in the submillimeter range,

the cell size of the grid must be on the order of a meter,
resulting in a numerically intractable large model space.
This forces us to use L values in the centimeter range.
In the present study the typical size of a computational
cell is 390 m and we use values between L = 0.015 m and
L = 0.08 m. Together with variable values determining h*,
h/hd* is maximum 0.27 and h/h*u exceeds 0.3 only in one case
(Table 1), whereas for certain simulations h/h*u is as small as
0.09. These values raise the question whether we treat the
problem properly in the continuum limit defined by Rice
[1993]. There, the required spatial resolution is met by a
ratio of h/h* = 0.25, which has also been used in the 2-D
dip-slip model of Taylor and Rice [1998], whereas Ben-Zion
and Rice [1995] used h/h* = 0.13 in their 3-D strike-slip
continuum realization. Furthermore, Kato and Hirasawa
[1997, 1999] performed 2-D subduction simulations with
a ratio of h/h* = 0.06, and Hirose and Hirahara [2002] and
Shibazaki and Iio [2003] used h/h* = 0.29 and h/h* = 0.6 in
a 3-D subduction model, respectively, being confident to
produce no numerical artifacts. Note that Lapusta et al.
[2000], who solved the full elastodynamic problem in a
2-D implementation on a strike-slip fault geometry, had to
reach a minimum ratio of h/h* = 0.025 to produce grid-
independent results. However, our execution of the quasi-
dynamic approach is designed to investigate qualitatively
the long term evolution of drained or undrained fault zones,
and thus we do not focus on a high-resolution study in the
line of Lapusta et al. [2000]. The comparison to other
studies suggests we meet the requirement formulated by
Rice [1993] and applied by Hirose and Hirahara [2002].
However, we cannot prove to obtain the ‘‘true’’ model
response in the sense of Lapusta et al. [2000], where any
increase in resolution does not affect the system’s response.

5. Parameter Setting

[18] We use the depth distribution of frictional scaling
parameters a and b obtained by Blanpied et al. [1991]
(Figure 2a), indicating a velocity-strengthening (a > b) zone

Table 1. Overview of the Models Discussed in Figure 8a

Model e ~p, MPa e~p+ L, m h*u, km h/h*u Response Figure

U1 2 � 10�5 0.03 3.33 0.12 unstable stick-slip
P1 5 � 10�5 0.015 2.20 0.18 pattern 9a, 9d, 12d
O1 8 � 10�5 0.015 3.26 0.12 oscillations
S1 10�4 50 1.4 � 10�4 0.03 9.54 0.04 stable sliding 12h
S1 10�4 0.015 4.77 0.08 different L, same response
S2 10�3 0.03 <0 <0 stable sliding (e > e50+)

U2 2 � 10�5 0.03 1.54 0.25 unstable stick-slip
P2 5 � 10�5 0.06 3.74 0.11 pattern
P3 7 � 10�5 0.03 1.90 0.21 pattern 9c, 9f, 12f
P4 10�4 100 2.8 � 10�4 0.03 2.20 0.18 pattern 9b, 9e, 10, 12e
S3 2 � 10�4 0.03 4.77 0.08 stable sliding
S4 3 � 10�4 0.03 <0 <0 stable sliding (e > e100+)
S6 10�3 0.02 <0 <0 stable sliding (e > e100+)

U3 2 � 10�5 0.03 1.22 0.32 unstable stick-slip
U4 10�4 0.08 4.24 0.09 unstable stick-slip
O2 2 � 10�4 125 3.6 � 10�4 0.03 2.60 0.15 oscillations 11, 12g
S5 5 � 10�4 0.03 <0 <0 stable sliding (e > e125+)
aFor all simulations c*u = 10�4 yr�1, Xlength = 100 km, nx = 256. All experiments were performed with fh = 104 and fh = 1. Remarks to response types

correspond to both realizations, confirming the validity of results for variable degrees of damping. For differences in details of slip evolutions between
simulations with fh = 104 and fh = 1, see text and Figure 9.
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in the uppermost 3 km and below z = �14 km. Between
these two zones a velocity-weakening region (a < b) allows
instabilities to develop.
[19] Although the model can potentially be used to study

explicitly fluid flow phenomena related to faulting, we
focus here on fundamental response pattern resulting from
either drained or undrained conditions. Therefore a neces-
sary simplification is the imposed equality of pore pressure
inside and outside the fault plane in excess of hydrostatic.
The desired equality stems from the dependence of h*u on se
and thus on p (equation (15)). A physically more realistic
hydrostatic pore pressure gradient in the crustal bulk in
combination with an overpressured fault core and relatively
high-permeable fault walls would cause the pore pressure in
the fault to equilibrate over an amount of time determined
by the actual diffusivity. Thus a temporal decrease of p in an
initially overpressured fault zone bounded by permeable
fault walls leads to a continuously decreasing h*u which we
aim to avoid. Certainly, h*u depends on changes in f, but
these changes are shown to be minor and do not control the
model’s response because of a temporally variable critical
cell size. By setting p = p1 we leave p primarily a function
of the second term in equation (8). As intended, pore
compacting and dilatant processes determine pore pressure
evolution rather than a (naturally probable) gradient be-
tween p and p1. Thus

p x; z; 0ð Þ ¼ p1 zð Þ ¼ max phyd zð Þ; sn zð Þ � ~p
� 	

; ð16Þ

where ~p is the difference between the lithostatic gradient
and p (Figure 2b). Used values of ~p result in different l = p/
sn profiles (Figure 2c), controlling the response of an
overpressured fault plane to external load.
[20] For computational reasons discussed in section 3.5

we use fh = 104 throughout this study, emphasizing the

investigation of the long-term slip evolution, and focusing
to lesser extend on details associated with single instabil-
ities. We repeat various simulations with fh = 1 to document
the validity of the obtained results for quasi-dynamic con-
ditions. As outlined by equation (15), em0/b is a crucial
parameter controlling the stability of a system in the
undrained limit. Because our primary interest is the influ-
ence of dilatancy we keep m0 = 0.7 and b = 5 � 10�4 MPa�1

constant.
[21] Values for diffusivity representing drained and un-

drained conditions are c*d = 104 yr�1 and c*u = 10�4 yr�1,
respectively, which is supported by the graphical represen-
tation of equation (12) described in section 6. To compute
shear stress t(x, z, t), we evaluate equation (1) after each
integration step, using t0 = 100 MPa being scalar for
simplicity. Actually, t0 represents the applied stress in the
crust in the absence of driving forces, i.e., equation (4) with
m = m0, and a lithostatic and a hydrostatic gradient could
have been used to obtain t0(z). The chosen value determines
the absolute stress level on the fault, but since we are
interested in relative stress changes t0 = 100 MPa does
not influence the conclusions.

6. Stability Regimes

[22] Figure 3 illustrates the dependence of the normalized
critical stiffness �k on hydraulic diffusivity for a specific
value of l. The normalization �k = kcr/kd

cr is carried out using
kd
cr, because it is the maximum value for drained conditions
at which F(c*) approaches zero (equation (12)). It allows an
intuitive understanding of the system’s response in terms of
a simple spring block slider model, since k > kcr and k < kcr

results in stable and unstable responses, respectively [Ruina,
1983]. The analysis of a 1-D model [Segall and Rice, 1995]
reveals that different depth sections of the present 3-D

Figure 3. Graphical representation of equation (12). Normalized stiffness, �k = kcr/kd
cr for a given set of

a, b values, as a function of effective diffusivity, c*. Two sets of lines correspond to different values of b,
with a = 0.015 = const, se = 200 MPa. Top set is for b = 0.019; middle set is for b = 0.017. For a > b, the
response is always stable (kcr is not defined), whereas a < b allows for stable as well as unstable slip rates,
depending on c* and on the efficiency of dilatant processes, i.e., on the relative size of em0/b. The dotted
line approximates the boundary between ‘‘unstable’’ (below) and ‘‘sustained oscillations’’ (above)
solutions discussed by Segall and Rice [1995]. R1–R3 mark locations of �k of the seismogenic parts of
the standard models discussed in section 7.1. Compare to Figure 6.
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system can be situated in three possible stability regimes.
For a drained fault (c* > 101 yr�1) the sign of a � b controls
the response mode, i.e., kcr is defined only for a < b.
[23] For undrained properties the analysis of equation

(12) indicates a bifurcation of �k = �k(e, c*) in a transition
zone between essentially drained and undrained regimes. In
the undrained, frictionally unstable environment, two
responses are possible. First, if e is smaller than a critical
value ecr, the 1-D system develops regular stick-slip behav-
ior as under drained conditions. Second, dilatant processes
are able to stabilize an otherwise unstable fault, leading to
stable slip rates if e > ecr. To determine ecr, equation (12) can
be rewritten as

ecr ¼ � bsn
m0

l� 1ð Þ b� að Þ: ð17Þ

Note that ecr is defined only for a < b and depends on sn for
various degrees of overpressurization, l.
[24] Segall and Rice [1995] observed that for some range

of k < kcr infinite oscillations persist, approximated by the
dotted line in Figure 3. As shown in section 7.2, we do not
observe this particular response of a 1-D model for a wide
parameter range for drained conditions in our 3-D simu-
lations, since observed k are smaller than k values associated
with the oscillations response regime. However, we observe
oscillations as a special case of nonuniform response pattern
for undrained conditions (Section 7.5), because the depth
dependence of ecr leads to a transition zone at constant c* as
a function of e. Sections 7.4 and 7.5 will focus on the
emergence of nonuniform spatiotemporal slip evolutions of
models with parameters defining these transition zones.

7. Modeling Results

7.1. Reference Models

[25] We begin the discussion of modeling results with the
validation of our procedure by comparing generated slip
evolutions of a drained model to previously investigated
results. A typical implementation example consists of a
100 km � 24 km fault zone discretized into 256 � 64 cells.
Drained conditions are parameterized by c*d = 104 yr�1,
which is shown not to interact with a transition zone in
Figure 3. The pore pressure profile follows equation (16)
with ~p = 100 MPa, which leads using L = 0.03 m to h/h* =
0.27. The chosen value e = 10�4 has no influence on slip
evolution, as revealed by the collapse of all �k = �k(e, c*)
lines for c* > 10 yr�1 (Figure 3). The normalized critical
stiffness �k at seismogenic depth is located at R1 in Figure 3,
and Figure 4a displays the typical stick-slip pattern of slip
evolution of an arbitrarily chosen profile along the fault
plane.
[26] We use k = ksys = Dt/Du to determine the stiffness

[Dieterich, 1992; Kato and Hirasawa, 1997] of a system,
estimating the stress drop Dt and coseismic slip Du from
computed results. We find that �k of R1 is approximately 0.3,
using kd

cr = 0.004 � 100 MPa/0.03 m to normalize k.
Because k > kcr allows instabilities do develop, slip evolu-
tion in Figure 4a shows established features of slip evolu-
tion of previously performed rate- and state-controlled
frictional strike-slip models [e.g., Tse and Rice, 1986; Rice,
1993; Rice and Ben-Zion, 1996; Ben-Zion and Rice, 1995;
Lapusta et al., 2000]. Stable sliding occurs in the velocity-

strengthening regime below the seismogenic zone where a >
b, with slip rates equal to v1 shown by the velocity
evolution in Figure 4b of an computational point at
7 km depth somewhere along the fault’s strike. In case
a < b, accumulated strain energy is released in regular,
unstable stick-slip behavior with an average repeat time of
t̂ = 101.8 years. Corresponding velocities indicate the
locking of the fault (v 	 v1) at interseismic periods.
Figures 4c–4e display corresponding temporal evolution
of stress, porosity, and pore pressure, respectively. Slip
events are associated with shear stress drops of 16 MPa,
and e = 10�4 allows a coseismic porosity increase of about
1%. Interseismic periods exhibit gradual stress increase and
porosity reduction. High diffusivity is responsible for an
immediate equilibration of pore pressure states p and p1,
leading to small pore pressure changes during slip events
and a balanced pore pressure level between instabilities.
Using fh = 1 instead of fh = 104 leads to higher coseismic
slip rates, larger amplitudes of corresponding variables, and
larger interevent times.
[27] We change conditions from drained to undrained by

decreasing the effective diffusivity to c*u = 10�4 yr�1, which
leads to h/h* = 0.25; that is, variations in nucleation size
compared to the previous case can be neglected. We also
change e from 10�4 to 2 � 10�5 to assure a regular stick-
slip response of the system (�k at seismogenic depth at R2 in
Figure 3), but all other parameters are kept constant.
Whereas the evolution of slip, velocity, and shear stress of
an arbitrary cell at z = �7 km of this undrained model are
comparable to the corresponding functions of the standard
drained model (Figure 5a), the evolution of porosity and
pore pressure changes differ. Slightly smaller stress
drops of about 13 MPa lead to shorter interevent times
of t̂ = 87.3 years. The dilatancy coefficient e = 2 � 10�5

allows porosity increases of 0.1%, an order of magnitude
smaller than those generated by e = 10�4 in the drained
model. The significance of porosity changes on pore pres-
sure evolution in the undrained limit is revealed by a
coseismic drop in p, indicating that an increase in f of
0.1% is sufficient to produce a pore pressure change of
about 0.5 MPa. Positive _f and small effective diffusivity
result in elevated pore pressure in excess of the background
level p1 during interseismic periods, suggesting the fault is
weaker compared to the drained fault. This relative weak-
ness is responsible for earlier onset of instabilities.
[28] The other end-member case of system responses is

stable creep. Whereas previously applied e = 2 � 10�5 leads
to the discussed unstable stick-slip response, e > 2 � 10�4

results in a creeping fault with slip rates v = v1. Slip
induced increase in pore space is sufficient to stabilize an
otherwise unstable fault (�k marked by R3 in Figure 3),
because e > ecr for dominating depth sections. Slightly
smaller values like e = 10�4 alter the type of response
significantly shown later in section 7.5. Note that these
particular responses, creep and nonuniform slip behavior as
discussed below, cannot be produced by a purely elastic
model with homogeneous frictional properties, since a < b
at seismogenic depth allows for instabilities at all times.

7.2. Effect of Diffusivity on Average Repeat Time

[29] The stability regime of reference model R1 is linked
to regimes of both undrained models R2 and R3 for
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decreasing c* and different values of e (Figure 3). An
indicator of the existence of a transition of response types
from drained to undrained regimes is the change of average
repeat time of system-wide events, t̂. Juxtaposed to the
theoretical dependence of �k on c* in Figure 6a, Figure 6b
shows t̂ as a function of c* for four systems with e = [10�5,
5 � 10�5, 10�4, 5 � 10�4].
[30] With k = ksys defined above, we find that �k of

systems discussed in Figure 6b is maximum 0.2–0.3. As

expected, k > kcr since instabilities can develop. Observed
low values of �k correspond to the ‘‘unstable’’ regime in
Figure 4 of Segall and Rice [1995]. It shows that k of
current simulations do not fall into ‘‘sustained oscillations’’
parts of the parameter space, where �k is considerably larger.
In principle, the change of the crust’s properties would
allow a modification of K and hence k, but this tuning is
beyond the scope of the present work.

Figure 4. Results of the standard drained model R1 (see corresponding �k in Figure 3). Parameters c* =
104 yr�1, e = 10�4, ~p = 100 MPa, L = 0.03 m, Xlength = 100 km, nx = 256, h/h* = 0.27, fh = 104, m0 = 0.7,
b = 5 � 10�4 MPa�1. (a) Cumulative slip evolution. Lines are drawn every 5 years. Sections at depth
slide stable, whereas sections at seismogenic depth are locked in interevent times and slip seismically
during an instability. (b) Velocity evolution. Dotted line represents v1. Solid black line shows the
behavior of a cell at 7 km depth, vcell, indicating locked interseismic periods because vcell 	 v1. Grey line
displays the maximum slip rate on the fault plane at a given t, vmax, indicating the lower part of the fault
slips with v = v1 during interseismic periods. (c)–(e) Corresponding evolution of shear stress, porosity
and pore pressure change of a cell at z = �7 km. Different amplitudes of p � p1 are due to hard disc
space friendly sparse sampling of the continuous numerical solution (monitor every 10th of about 80,000
time steps) and high diffusivity, leading to instantaneous equilibration of the pore pressure states.
Compare to Figure 5. For details see text.
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[31] The systematic decrease of t̂ for e > 10�5, and the
relatively constant t̂ dependence for e = 10�5 toward more
undrained conditions reflects the corresponding �k = �k(e, c*)
functionality. The decrease of t̂ is in agreement with the fact
that more stiff systems cannot sustain as large stresses as
relatively compliant systems [Segall, 1996]. Hence they fail
more easily and therefore more often, which is supported by
the observed tendency of decreasing ksys for decreasing c*
at constant e. The physical interpretation for a significant
reduction of t̂ for e � 5 � 10�5 toward decreasing c* can be
obtained from the evaluation of equation (12). For small c*
the right-hand side becomes sensitive to em0/b with respect
to se(b � a). With the applied constant values for b and m0,
the stabilizing effect of dilatant pore space increase at the

onset of instabilities dominates for values of e � 5 � 10�5.
Hence relatively undrained conditions coupled to an effec-
tive dilatant mechanism cause coseismic slip to cease earlier
compared to less effective pore space increase and the
ability to equilibrate pressure states, respectively.
[32] It can be seen from Figure 6b that t̂ for e � 5 � 10�5

starts to decrease at larger diffusivities (c* � 103 yr�1 for
e = 5 � 10�4, c* � 101 yr�1 for e = [5 � 10�5, 10�4]) than
the corresponding lines in Figure 6a suggest. The reason for
this deviation from the theoretically derived 1-D approach
can be seen in the explicit 2-D extension of the fault plane.
Other parameters controlling the repeat time not investigated
here are the damping factor fh, the spatial extension of the
model space, Xlength, and the chosen discretization, h/h*.

Figure 5. Results of the standard drained model R2 (see corresponding �k in Figure 3). Parameters are as
in Figure 4, except c* = 10�4 yr�1, e = 2 � 10�5, h/h*u = 0.25. (a) Cumulative slip evolution. Lines are
drawn every 5 years. (b)–(e) Corresponding evolution of vcell at z = �7 km, shear stress, porosity, and
pore pressure change. For details see text. Note the similarity in slip, velocity and stress evolution to
Figures 4a–4c, but different response characteristics between corresponding Figures 4d–4e. In particular,
the coseismic pore pressure change is an order of magnitude larger compared to the drained model and p >
p1 during interseismic periods.
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Beyond c* = 100 yr�1, t̂ of system-wide events cannot be
measured any longer for simulations with e � 5 � 10�5,
since systems do not respond in a regular stick-slip manner
but in a nonuniform way discussed in sections 7.4 and 7.5.

7.3. Terminology

[33] On the basis of the results shown in section 7.1 we
clarify the terminology used in the discussion below. Strain
release during episodic quasi-dynamic slip occurs with
seismic slip velocities (Figures 4 and 5), leading to a
periodic sequence of uniform system-wide or characteristic
stick-slip events. As demonstrated (Figure 4), fh � 1 results
in slip rates during instabilities that are smaller than those
observed in natural earthquakes (�1 m s�1). Hillers et al.
[2006] defined a threshold velocity to separate seismic from
aseismic slip generated by 3-D rate- and state-controlled
quasi-dynamic simulations using heterogeneous frictional
properties, without producing realistic dynamic slip rates.
Following their concept, we interpret periods of accelerated
slip as intermittent quasi-dynamic instabilities, and v � v1

are considered as seismic slip rates, even if simulated
velocities do not reach values comparable to observed rates.
Stable sliding or creep refers to slow slip rates on the order
of v1, as found for deeper parts of the fault in Figures 4a
and 5a. These creeping portions of the fault are assumed to
behave aseismic. The seismogenic depth sections of the
unstable stick-slip reference models are referred to as
locked, since here v is up to three orders of magnitude

smaller than the load velocity (Figure 4b). We use the terms
nonuniform, complex or pattern-like to describe heteroge-
neous slip evolution along the fault’s strike. We do not
distinguish explicitly between aseismically accelerated or
fast creep, respectively, and slow creep.

7.4. Transition I: From Drained to Undrained
Conditions

[34] So far we investigated the behavior of systems whose
location in the parameter space resulted in characteristic slip
events or stable creep. We now focus on the behavior of
systems situated in a transition between the clearly defined
stable and unstable regimes. First, we continue to decrease
the diffusivity beyond conditions that are drained for
time periods during slip events. As indicated by Figure 6,
for systems with e = 10�4 t̂ can be obtained only for c* �
1 yr�1. More undrained systems with c* < 1 yr�1 and e =
10�4 respond in a more complex way, explored by a
representative model in T1 with c* = 10�2 yr�1

(Figure 6a). The resulting nonuniform slip pattern is dis-
played in Figure 7a, demonstrating that an instability does
not develop into a system-wide event (e.g., at x = 50 km, u�
12.5 m). The slip deficit around this instability is reduced
during a period of bilateral creep with variable slip rates.
After two system-wide events (u = 14.5–17 m) an alternat-
ing pattern of stable sliding and small instabilities is
established, with coseismic slip initiating where stress
concentrations of creeping sections interact.

Figure 6. (a) Reproduction of Figure 3. T1, T2 indicate transition zones. T2 approximates the location
of the horizon of the parameter space shown in Figure 8. (b) Average repeat times as a function of
diffusivity, showing the same trend as �k in Figure 6a, revealing the correspondence of critical stiffness
and observed interevent times. For details see text.
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[35] The modeling suggests that dilatancy hardening
processes decelerate the slip rates of a developing instability
to aseismic velocities (e.g., at x = 50 km, u = 20 m). Once
sufficient pore space is created, simultaneous reduction of p
and corresponding increase of the effective normal stress

lead to the onset of dilatancy hardening that stabilizes slip.
Subsequent creeping periods develop after a time period
controlled by c* sufficient to equilibrate p and p1 (compare
to Figure 5e). Figure 7a shows the change of the resulting
pattern during several cycles, with alternating sequences of

Figure 7. Pattern-like spatiotemporal slip evolutions of models in transition zone T1 (Figure 6a). In-
variant parameters are c* = 10�2 yr�1, e = 10�4, ~p = 100 MPa, L = 0.03 m, m0 = 0.7, b = 5 � 10�4 MPa�1,
Xlength = 100 km, nx = 256, and h/h* = 0.24. Lines are drawn every 2 years. (a) Plot of fh = 104. See
Figure 12c for vmax, black line. (b) Plot of fh = 1. See Figure 12 for vmax, grey line. (c) Additional (fading)
noise added to initial values of the friction coefficient, fh = 1. (d) Quenched heterogeneity. Additional
(persistent) noise is added to the critical slip distance L, fh = 1.
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unstable and stable slip, in addition to system-wide events.
Thus homogeneous hydromechanical and frictional proper-
ties are sufficient to generate nonuniform spatiotemporal
slip evolution as a result of pore pressure controlling
physical mechanisms.
[36] It is important to verify that basic characteristics of

Figure 7a are a generic result of dilatancy hardening
mechanisms, and that they are persistent choosing different
geometrical and/or frictional parameters. Figure 7b shows
the slip evolution for the same set of parameters except fh =
1. Clearly, some second-order features do not persist, but
the overall response pattern consists of alternating unstable
and stable fault sections. To explore the origin of symmetry
around Xlength/2 in Figures 7a and 7b, we performed
simulations with noise added to a variable or parameter,
respectively. Figure 7c shows the result of a simulation with
random noise being added to initial conditions of the
friction coefficient, m(x, z, 0) = m0 ± 5% noise, whereas
Figure 7d is produced using quenched heterogeneity by
choosing L(x, z) = 0.03 m ± 5% noise. Heterogeneity in the
initial conditions leads to a persistent shift of the symmetry
axis, whereas the use of quenched heterogeneity results in
the loss of a time invariant axis of symmetry. This suggests
the symmetry observed in cases with homogeneous hydro-
mechanical properties along strike is a finite size effect of
the model fault due to the application of relatively few cells
covering a relatively short fault zone (compare to dimen-
sions of Rice [1993], Liu and Rice [2005], and Hillers et al.

[2006]). In this case, repetitions of 10 faults along strike in
each direction may not be sufficient to approximate infinite
periodic boundary conditions. A symmetric pattern is even
generated by computationally expensive simulations with
Xlength = 200 km and constant numerical discretization, and
by a case with doubled nx and nz while bisecting L on a
100 km long fault, respectively. This indicates that at present
computational limits do not allow to study a possible break
in symmetry in the absence of finite size effects.

7.5. Transition II: Undrained Conditions

7.5.1. Response Types in the Parameter Space
[37] Section 7.4 dealt with reductions of c* while

keeping e constant. Now we investigate the effect of e
on slip evolution for constant undrained conditions (c*u =
10�4 yr�1). Figure 8 shows the transition T2 displayed in
Figure 6a for a particular depth section, i.e., for a particular
set of a, b, l, as an alternative horizon of the multidimen-
sional parameter space. We used equation (17) to obtain the
dependence of l on e. In the 1-D model of Segall and Rice
[1995], a specific ecr can be determined to separate stable
(e > ecr) from unstable (e < ecr) regimes. In the present 3-D
fault model this boundary expands to a zone, because the
frictionally unstable portion of the fault between 4 and
13.5 km depth (a � b = 0.004 = const) occupies an ex-
tended range in the diagram, represented by the grey shaded
region in Figure 8. Values for depth regions for the smallest
positive b � a at about 3 and 15 km depth are plotted for
reference, indicating an orientation of the transition zone

Figure 8. Parameter space l = l(e). U, P, O, and S denote observed response types unstable, pattern-
like, oscillating and stable, respectively. Grey shaded zone illustrates ecr at seismogenic depth where b �
a = 0.004 = const. Vertical lines represent l values in the b � a = 0.004 depth section. The lines’ vertical
position and extension depends on ~p. Solid diamonds mark l at nucleation depth. Left of e

~p

+ marked by
arrows at the abscissa h*u is defined for each ~p model set, whereas to the right h*u < 0 and therefore the
response is stable. See Table 1 for a summary of results.
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toward smaller e values. This shows ecr is not constant
throughout the plane but rather a function of depth. Hence
different depth sections with different 1-D response types
that depend on their location in the parameter space, when
considered isolated, interact through K, leading to complex
slip evolutions.
[38] The vertical lines in Figure 8 represent l values at

depths where b � a = 0.004 = const for a specific
simulation. They show that these locations cannot be
specified uniquely. Capital letters S, O, P and U denote
stable, oscillating, pattern-like and unstable response
types, respectively. The length of individual lines corre-
sponds to applied ~p values, such that the set of lines
ranging from 0.54 < l < 0.87, 0.35 < l < 0.73 and
0.35 < l < 0.67 represent systems with ~p = [50, 100, 125]
MPa, respectively. The solid diamonds at each line indicate
l at 7 km depth where instabilities tend to nucleate.
Different values of ~p change h* and thus h/h* on an
invariant computational grid with constant L. This could
give rise to systematic artefacts in certain model responses.
To rule out this possibility, we repeated selected simulations
using different values for L and thus h*, while keeping ~p
constant. No significant change in the response pattern has
been detected, so that we are comfortable that our first-order
results do not depend on the underlying discretization of the
model space. While any given L does not influence the sign
of h*u, L does control the actual nucleation size. It is
therefore possible to systematically choose a certain L for
each particular system to keep h/h* constant for all simu-
lations. We refrain from using this option since we want to
change only l and e for a set of simulations to study the
very effect of the two hydraulic parameters.
[39] As equation (15) reveals, h*u is defined only (i.e.,

h*u > 0) if e is less than b[se(b� a)]max/m0. Defining e~p
+ as the

maximum e value that makes h*u positive for a specific
degree of overpressurization, e

~p

+ has to be larger than 1.4 �
10�4, 2.9 � 10�4, and 3.6 � 10�4 for systems with ~p = [50,
100, 125] MPa, respectively. These values are indicated by
small arrows at the abscissa in Figure 8. Systems located to
the right of their corresponding arrow (S2, e = 10�3 > e50

+ ;
S4, e = 3 � 10�4 > e100

+ ; S5, e = 5 � 10�4 > e125
+ ; S6, e =

10�3 > e100
+ ) undergo stable creep throughout their entire

depth, because the criterion h*u > 0 is never met down the
fault [Taylor and Rice, 1998]. Models S1 and S3, however,
respond in a stable fashion having e < e

~p

+. Here, h*u is
defined and thus the cause for stable creep is not h*u < 0.
Rather, these models correspond to the standard creeping
model introduced in section 7.1, that is, their location in the
l = l(e) plane indicates that dilatant processes suppress
instabilities. In agreement with Segall and Rice [1995], the
fault slips stably with v = v1 after an initial phase of
compaction.
[40] Differences in nucleation size do not lead to stable

response. For example, the estimate of the nucleation
zone of model S1 (h*u = 9.54 km, Table 1) is on the
order of the seismogenic width of the fault, which makes
the development of slip instabilities unlikely [Hillers et
al., 2006]. A repetition of the simulation changing L to
0.015 m and h*u = 4.77 km generates the same creeping
response, as does model S3 with the same value for h*
but different ~p and L. This demonstrates bisecting L does
not change the response type, even in a sensitive region

of the parameter space (O1 is located next to S1). Note
that h*u for the unstable responding model U4 (~p = 125 MPa)
is 4.24 km, a value close to h*u = 4.77 km of creeping S1
and S3. Thus a positive h*u and specific L are important,
but in this case not controlling quantities. Instead, the
particular parameterization, i.e., the degree of overpressu-
rization coupled to a specific dilatancy coefficient, is
responsible for the creeping response.
[41] We observe for each of the three model sets with a

specific ~p a transition from unstable to stable response as a
function of increasing e. However, this transition from stick
slip to creep does not occur instantaneously, at a specific
value of e. Certain simulations reveal a pattern-like or
sometimes oscillating response. As ~p decreases, this transi-
tional behavior tends to be located toward smaller e with
respect to the ~p = 125 MPa set, but the main U ! P/O ! S
sequence with increasing e remains persistent. Possible
reasons for this shift are as follows:
[42] 1. Critical values for e

~p

+ to assure h*u > 0 show the
same order as the discussed shift toward smaller e values of
the pattern-like response zone, i.e., e125

+ > e100
+ > e50

+ .
Therefore a system with a lower degree of overpressur-
ization is more unstable for a certain position on the e
axis. For smaller l, h*u is smaller and thus instabilities are
more likely to nucleate, compared to a more over-
pressured system.
[43] 2. As indicated by the dashed lines, ecr values for 0 <

(b � a) < 0.004 appear to be smaller than those in the grey
shaded zone, indicating that different depth horizons be-
come unstable at dilatancy regimes different from those of
the seismogenic depth section.
[44] 3. One of the conditions for the onset of instability is

the degree of overpressurization at the depth level of the
nucleation itself. As the solid diamonds at each vertical bar
indicate, the nonlinear depth dependence of l (compare
Figure 2c) places systems with ~p = 125 MPa at relatively
greater distance from ecr at nucleation depth. The other
extreme pose systems with ~p = 50 MPa since here l at 7 km
depth is closer to the section where the corresponding 1-D
response is stable. Evidence for the significance of the
degree of overpressurization are the responses of three
models for which e = 10�4: System U4 (~p = 125 MPa)
behaves in the regular stick-slip behavior, and slip evolution
of P4 (~p = 100 MPa) is nonuniform, whereas S1 (~p =
50 MPa) creeps stably.
7.5.2. Nonuniform Response Pattern
[45] We conclude this section by discussing some non-

uniform response pattern obtained in the systematic study of
relevant parameters. In Figure 9 we plot slip evolutions of
models P4, P1, and P3, where the upper and lower row
shows responses generated with fh = 104 and fh = 1,
respectively. For P3 and P4, ~p = 100 MPa, and P1 has ~p =
50 MPa. Dilatancy coefficients do not differ significantly
among the three realizations, ranging from 5 � 10�5 to
10�4 for P1 and P4, respectively. Using fh = 104, the slip
evolution of P1 (Figure 9a) shows qualitatively the same
features as the nonuniform slip pattern discussed in Figure 7.
We observe some system-wide events with less coseismic
slip compared to responses shown in Figure 9b due to low
effective normal stresses, interrupted by periods of creep
and smaller slip instabilities. At u > 20 m a pattern of
alternating instabilities and creep evolves, similar to the one
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discussed in Figure 7. Compared to P1, model P4 (e = 10�4,
Figure 9b) develops extended regions of creep, and inter-
mittent slip events vary in size. Interestingly, the pattern’s
symmetry is broken at u > 20 m which is possible to happen
at other simulations after sufficiently long simulation time.
A different pattern evolves when e is changed to e = 7 �
10�5 (Figure 9c), indicating the change of response pattern
is caused by the 30% difference of e between P4 and P3.
Particularly, in model P3 two system-wide stick-slip events
occur between u = 13.5 m and u = 17.5 m, which do not
evolve in model P4. Moreover, events of P3 for u > 18 m
show larger coseismic slip than corresponding events in P4,
a direct consequence of the smaller e, since higher slip rates
are required to produce the same change in porosity
compared to more effective dilatant hardening.
[46] To discuss a homogeneous data set, all numerical

experiments necessary to compile Figure 8 were performed
using fh = 104. We repeat all simulations except those where
h* < 0 using fh = 1 to verify the robustness of observed slip
evolutions without removing energy from the system
through overdamped radiation. Figure 9d confirms the

overall trend observed in Figure 9a, except showing a
reduced tendency to generate system-wide events. Pattern
shown in Figures 9e and 9f lack some characteristics of
corresponding pattern in Figures 9b and 9c, respectively.
The generated slip evolutions show regular sequences of
creep and coseismic slip that persist in space and time.
Results are thus sensitive to the degree of damping, but
general characteristics and hence conclusions remain
unaffected.
[47] We plot velocity, stress, porosity, and pore pressure

change evolution of two computational points at z = �7 km,
x = 50 km and x = 75 km, respectively, of model P4 with
fh = 1 (Figure 10). The response functions illustrate that
some areas of the fault tend to behave in a more unstable
way by having significantly accelerated slip rates (v � v1)
during instabilities and sufficiently reduced velocities (v 	
v1) in interseismic periods, whereas nearby areas exhibit
creeping slip rates on the order of v1. The evolution of t, f
and p � p1 is coupled to the velocity evolution as described
in the undrained reference model (Figures 5d and 5e). Note
that e = 10�4 allows for pore pressure changes of up to

Figure 10. Response of two cells at z = �7 km and x = 50 km and x = 75 km, respectively, for a pattern-
like response type of model P4 with fh = 1 (Figure 9e). Evolution of (a) slip velocity, (dotted line
illustrates v1), (b) shear stress, (c) porosity, and (d) pore pressure change. Note the difference in behavior
for t > 500 years.

Figure 9. Nonuniform spatiotemporal slip evolution from selected models P1, P4, and P3 (Figure 8) in the undrained
limit, located in transition zone T2 (Figure 6a). For parameters, see insets and Table 1. Lines are drawn every 2 years.
(a)–(c) Plots of fh = 104 (See Figures 12d–12f, black lines, for vmax.) (d)–(f) Responses to identical parameter set as in
the upper row except fh = 1 (see Figures 12d–12f, grey lines, for vmax).
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2 MPa, compared to changes of 0.4 MPa shown in Figure 5
with e = 2 � 10�5.
[48] A particular response type are sustained oscillations

as of model O2 (Figure 11) which generates slip rates
fluctuating around v1 (Figure 11a), and corresponding
small stress fluctuations (Figure 11b). A relatively large
dilatancy coefficient of e = 2 � 10�4 is responsible for
porosity changes of 0.5%, associated with changes in pore
pressure of about 1 MPa, and p > p1 when slip rates are
smallest. Note that these oscillations are a product of models
situated in a region of the parameter space that does not
correspond to those observed by Segall and Rice [1995].
While they observed oscillating behavior for a wider range
of 0.9 < �k < 0.4 and c* > 1 yr�1, we observe this response
only for two specific parameter choices in the undrained
limit. This discrepancy can be attributed to the spatial
extension of the model space and associated interactions
in the present study.
[49] Figure 12 summarizes velocity evolutions that cor-

respond to simulations used to discuss generic response
types observed in this study. Figures 12a and 12b illustrate
the effect of different damping on regular stick-slip behav-
ior, i.e., overdamping removes energy from the system more
effectively leading to shorter interevent times. The slip rate
during instabilities of both parameter sets is interpreted as
being seismic. Velocities of models generating nonuniform
slip evolution (Figures 12c–12f) are shown to produce

different patterns depending on fh, but significantly ac-
celerated slip justifies the label ‘‘seismic’’ for intermittent
instabilities using fh = 1 or fh = 104, even though slip
rates do not reach values as in Figures 12a and 12b.
Velocities of about v � 10 m yr�1, like the ‘‘plateaus’’
visible in Figure 12f at t = [350, 400, 450] years, can be
interpreted as fast but aseismic creep. Generally, not over-
damped simulations produce larger slip rates. Figures 12g
and 12h illustrate vmax(t) of sustained oscillations and
stable creep, respectively.

8. Discussion

[50] In our analysis of the parameter space of a 3-D fluid-
infiltrated rate- and state-controlled fault model we observe
three different types of spatiotemporal slip evolution. First,
in agreement with previously discussed work using homo-
geneous frictional properties [Tse and Rice, 1986; Rice,
1993; Ben-Zion and Rice, 1995; Rice and Ben-Zion, 1996;
Lapusta et al., 2000], models in the drained limit develop
the typical seismic stick-slip behavior of repeating charac-
teristic earthquakes. Interevent times are found to depend on
hydraulic diffusivity and dilatancy coefficient, in agreement
with theoretically derived values of the critical stiffness.
Second, in the undrained limit, a relatively large dilatancy
coefficient leads to stable aseismic creep of the entire fault.
Third, the extension of the undrained 1-D model to two

Figure 11. Response of an arbitrarily chosen cell at seismogenic depth of an oscillating response type of
model O2 with fh = 1. Evolution of (a) slip velocity (dotted line illustrates v1), (b) shear stress,
(c) porosity, and (d) pore pressure change.
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dimensions explored here leads to nonuniform spatiotem-
poral slip pattern with alternating seismic slip, and aseismic
creep of variable slip rates. Those patterns are not artifacts
of the numerical procedure since their occurrence is persis-
tent for all degrees of overpressurization, degrees of damp-
ing, and variable L values used in some test cases. Some
characteristics of irregular slip evolution demon-
strated by simulations with parameters located in transi-
tional stability regimes bounded by stable and unstable
regimes are as follows.
[51] A persistent feature is the episodic occurrence of

instabilities followed by stable, aseismic creep. In terms of
natural seismicity, dilatant processes slow down an earth-
quake from coseismic slip velocities to creeping velocities.
Slip at these velocity regimes is referred to as stable after-
slip. In agreement with our modeling results, afterslip has
been reported to occur in regions surrounding the coseismic
slip regions of the 2003 Tokachi-oki earthquake [Miyazaki
et al., 2004]. Bürgmann et al. [2002] modeled afterslip of
the 1999 Izmit earthquake. In this case, afterslip was
observed between those parts of the fault that slipped
coseismically. Hearn and Reilinger [2002] discussed pos-
sible processes that lead to this particular behavior, favoring
a > b controlled velocity-strengthening friction. However,
the standard interpretation of laboratory data suggest that
values of a and b at seismogenic depth are unlikely to
produce stable creep. In contrast to Hearn and Reilinger
[2002] we suggest dilatancy induced postseismic creep,
since this allows simpler, uniform frictional properties on
the fault surface. Subsequent slip events nucleate where tip
regions of creeping sections interact as a result of periodic
boundary conditions. Whereas boundary conditions can be
considered being artificial, the onset of instabilities due to
creeping stress concentrations provides a possible mecha-
nism for earthquake nucleation. At least two of the models
show behavior that switches between different types of slip
evolution, where system-wide events are preceded and
followed by creeping periods. The larger the degree of
overpressurization in excess of hydrostatic, ~p, the less
coseismic slip occurs. However, comparing simulations
with the same ~p but different e shows that coseismic slip
also depends on dilatancy.
[52] It has been shown that complex features of observed

natural seismicity such as the occurrence of the Gutenberg-
Richter (GR) statistics and aftershock pattern cannot be
generated by rate- and state-controlled models in the con-
tinuum limit with homogeneous frictional properties [e.g.,
Tse and Rice, 1986; Rice, 1993; Ben-Zion and Rice, 1997;
Lapusta et al., 2000], but by inherently discrete model
realizations [e.g., Burridge and Knopoff, 1967; Langer et
al., 1996; Carlson and Langer, 1989; Bak et al., 1987; Ito
and Matsuzaki, 1990; Lomnitz-Adler, 1993; Ben-Zion,
1996; Zöller et al., 2005]. Cochard and Madariaga
[1996], Nielsen et al. [2000], and Shaw and Rice [2000]

confirmed that generation of slip complexity on a homoge-
neous fault requires special choices of constitutive and
model parameters. Here we have shown that heterogeneous
slip pattern can be generated with a continuous fault
description using homogeneous frictional and hydrome-
chanical properties along strike.
[53] As summarized by Ben-Zion [2001] intrinsic prop-

erties of the governing (drained) frictional law is not
observed to be sufficient to generate complexity in the
continuum class of models. Rather, heterogeneous slip
evolution has been shown to be associated with the a � b
induced velocity-weakening to -strengthening transition at
15 km depth [Lapusta et al., 2000, Figure 6]. It has been
demonstrated that variations in frictional parameters a, b,
and L, respectively, across rate- and state-controlled fault
models are sufficient to generate nonuniform spatiotemporal
evolution of slip [Liu and Rice, 2005; Hillers et al., 2006].
Thus some degree of frictional heterogeneity reflecting
observed structural properties of fault zones is required to
produce irregular slip pattern.
[54] Instead of parameterizing fault zone heterogeneity by

variations in frictional properties, we investigated in this
study the effects of physically plausible fluid related pro-
cesses on model seismicity using homogeneous parameter
distributions. Although generated slip events show only
limited degrees of complexity compared to studies using
quenched heterogeneity, our simulations provide insight
into possible stopping and nucleation mechanisms. Future
studies considering inertia and shear heating are expected to
produce more realistic properties of observed seismicity.
The present model is a basis for a further study on the
influence of pore pressure variation on slip complexity
[Hillers and Miller, 2006]. The model of Miller [2002]
clearly demonstrated this influence, but the impact of the
inherently discrete model limited these conclusions. Further
modeling of observed fluid-related phenomena, such as the
migration of pore pressure pulses after large events may
generate different seismicity patterns [Miller et al., 2004].
To achieve more realistic response types, subsequent studies
will approximate likely heterogeneous distributions of hy-
draulic diffusivity throughout a fault and vary e within its
physically reasonable limits.

9. Conclusions

[55] We analyzed the effects of hydraulic diffusivity and
dilatancy on spatiotemporal evolution of a rate- and state-
controlled, fluid-infiltrated extended 2-D fault plane in
the continuum limit. The parameter space study of quasi-
dynamic simulations reveal that, contrary to the 1-D model
by Segall and Rice [1995], a transition zone in the un-
drained limit arises that separates unstable from stable
response types. Using the formalism developed by Segall
and Rice [1995] and Rice [1993], we demonstrated that for

Figure 12. Maximum velocities summarizing the response types observed in this study. Grey lines, fh = 1; black lines, fh =
104; dotted line, v1. Unstable, seismic stick slip (Figures 12a and 12b), pattern-like, heterogeneous slip evolution with
intermittent seismicity, with seismic and aseismic slip rates greater than the loading rate (Figures 12c–12f), sustained
oscillations (aseismic) (Figure 12g), and stable creep (Figure 12h). (a) Reference model R1. (b) Reference model R2.
(c) Model in transition zone T1, homogeneous properties. (d) Model P1. (e) Model P4. (f) Model P3. (g) Model O2.
(h) Arbitrary stable model.
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models located in this transition zone the interaction of
physically based hydraulic processes on a two-dimensional
plane with homogeneous fluid-related properties gives rise
to nonuniform spatiotemporal slip pattern. Different degrees
of overpressurization, hydraulic diffusivities defining un-
drained conditions, and dilatancy coefficients from at
least half an order of magnitude define a parameter space
in which heterogeneous response types are persistent.
Although some particular characteristics of the generated
nonuniform results such as translational symmetry of slip
patterns around x = Xlength/2 can be assigned to the chosen
parameterization, we emphasize that the origin of slip
heterogeneity are dilatant hardening processes. As demon-
strated, the dilatancy coefficient e is a crucial parameter
controlling the stability of a rate and state friction governed
system in the undrained limit, while m0 and b are constant.
Unfortunately, there has been only a small number of
laboratory measurements carried out to determine values
for e. Also, more experiments of coseismically crack-gen-
erated porosity are needed. We recognize that the inferred
dilatancy coefficient deduced by Segall and Rice [1995]
from data byMarone et al. [1990] is e = 1.7 � 10�4, a value
too large to generate nonuniform slip pattern in our study,
leading only to oscillating response types for a relatively
low degree of overpressurization. Drained experiments of
Lockner and Byerlee [1994] suggest even a somewhat
larger value. However, the experiment by Marone et al.
[1990] was conducted at rather high slip velocities (1–
10 mm s�1), implying e might be significantly smaller at
low velocities occurring during the onset of an instability.
Hence considering velocity-dependent dilatant effects is
expected to support the conclusion drawn here. Neverthe-
less, further experiments are needed to investigate the
potential of dilatant processes to affect the development of
slip instabilities.

Notation

t time.
t̂ Interevent time.

Geometry
x, y, z coordinates.
Xlength length of the fault.
Zdepth depth of the fault.
i, k along-strike indices.
j, l downdip indices.

nx/nz number of cells along strike/depth.
h cell size.

Time-Dependent Variables
f(x, z, t) porosity.
v(x, z, t) slip velocity.
t(x, z, t) shear stress.
p(x, z, t) pore pressure

(fault zone).
se(x, z, t) effective normal stress.
q(x, z, t) state variable.
u(x, z, t) cumulative slip.
m(x, z, t) coefficient of friction.
tr(x, z, t) shear stress change.
fss(x, z, t) steady state porosity.
Time-Independent Parameters
a(z), b(z) frictional parameters.

sn(z) normal stress.
p1(z) pore pressure (crust).
phyd(z) hydrostatic pore

pressure.
Parameters (Elastic and Frictional)

G rigidity.
vs shear wave velocity.
v1 plate velocity.
t0 background shear stress.
m0 nominal friction.
v0 normalizing constant.
L critical slip distance.
fh damping factor.
K stiffness matrix.

Parameters (Hydraulic)
c hydraulic diffusivity.

LD diffusion length scale.
n dynamic pore fluid viscosity.
k permeability.
m fluid mass.
b fluid compressibility.
e dilatancy coefficient.

f0 nominal porosity.
~p difference of p to sn.
q specific discharge.
rf fluid density.

Derived Quantities
h* general critical cell size.
h*u undrained critical cell size.
h*d drained critical cell size.
kcr general critical stiffness.
ku
cr undrained critical stiffness.
kd
cr drained critical stiffness.
�k normalized critical stiffness.
c* effective hydraulic diffusivity.
c*u undrained hydraulic diffusivity.
c*d drained hydraulic diffusivity.
ecr critical dilatancy coefficient.
e+ maximum e that makes h*u > 0.
e
~p

+ e+ for specific ~p.
l overpressurization.
h0 damping term.
h effective damping term.

Observed Quantities
Dt coseismic shear stress change.
Du coseismic slip.
ksys system stiffness, Dt/Du.
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